DATA COMPRESSION FOR THE TOMO-e GOZEN USING LOW-RANK MATRIX APPROXIMATION

Optical wide-field surveys with a high cadence are expected to create a new field of astronomy, so-called "movie astronomy," in the near future. The amount of data from the observations will be huge, and hence efficient data compression will be indispensable. Here we propose a low-rank matrix approximation with sparse matrix decomposition as a promising solution to reduce the data size effectively while preserving sufficient scientific information. We apply one of the methods to the movie data obtained with the prototype model of the Tomo-e Gozen mounted on the 1.0 m Schmidt telescope of Kiso Observatory. Once full-scale observation with the Tomo-e Gozen commences, it will generate ~30 TB of data per night. We demonstrate that the data are compressed by a factor of about 10 in size without losing transient events like optical short transient point sources and meteors. The intensity of point sources can be recovered from the compressed data. The processing runs sufficiently fast, compared with the expected data-acquisition rate in the actual observing runs.

[1]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[2]  Mamoru Doi,et al.  Kiso Supernova Survey (KISS): Survey Strategy , 2014, 1409.1308.

[3]  David Taubman,et al.  Astronomical imagery: Considerations for a contemporary approach with JPEG2000 , 2014, Astron. Comput..

[4]  Yasuyuki T. Tanaka,et al.  DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY? , 2014, 1409.1309.

[5]  Чернышова Анна Владимировна Взаимосвязь экономического и политического кризисов в России как причина Февральской революции 1917 года , 2017 .

[6]  O. I. Wong,et al.  WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst , 2023, The Astrophysical Journal.

[7]  W. Lustermann,et al.  Data compression for the First G-APD Cherenkov Telescope , 2015 .

[8]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[9]  Mamoru Doi,et al.  KWFC: four square degrees camera for the Kiso Schmidt Telescope , 2012, Other Conferences.

[10]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[11]  A. Rest,et al.  SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER , 2016, 1603.05657.

[12]  Kazuma Mitsuda,et al.  Development of a real-time data processing system for a prototype of the Tomo-e Gozen wide field CMOS camera , 2016, Astronomical Telescopes + Instrumentation.

[13]  Naonori Ueda,et al.  Machine-learning selection of optical transients in the Subaru/Hyper Suprime-Cam survey , 2016, 1609.03249.

[14]  N. Yasuda,et al.  RAPIDLY RISING TRANSIENTS FROM THE SUBARU HYPER SUPRIME-CAM TRANSIENT SURVEY , 2016, 1601.03261.

[15]  Kazuma Mitsuda,et al.  Development of a prototype of the Tomo-e Gozen wide-field CMOS camera , 2016, Astronomical Telescopes + Instrumentation.

[16]  J. Weatherall,et al.  Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar , 2003, Nature.

[17]  J. Anthony Tyson,et al.  Large Synoptic Survey Telescope: Overview , 2002, SPIE Astronomical Telescopes + Instrumentation.

[18]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[19]  Hugues Benoit-Cattin,et al.  Lossy compression of scientific spacecraft data using wavelets. Application to the CASSINI spacecraft data compression , 2002 .

[20]  Milcho Tsvetkov,et al.  Singular Value Decomposition of Images from Scanned Photographic Plates , 2013, ArXiv.

[21]  Michael Porter,et al.  The Zwicky Transient Facility Camera , 2016, Astronomical Telescopes + Instrumentation.