A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2O(nlogn)

We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.

[1]  Leonid Khachiyan,et al.  Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..

[2]  Piyush Kumar,et al.  Minimum-Volume Enclosing Ellipsoids and Core Sets , 2005 .

[3]  Yurii Nesterov,et al.  Rounding of convex sets and efficient gradient methods for linear programming problems , 2004, Optim. Methods Softw..

[4]  Kurt M. Anstreicher,et al.  Ellipsoidal Approximations of Convex Sets Based on the Volumetric Barrier , 1999, Math. Oper. Res..

[5]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[6]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[7]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[8]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[9]  Michael J. Todd,et al.  On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids , 2007, Discret. Appl. Math..

[10]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[11]  Daniele Micciancio The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant , 2000, SIAM J. Comput..

[12]  B. Bank,et al.  Parametric Integer Optimization , 1988 .

[13]  Ravi Kumar,et al.  A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.

[14]  Friedrich Eisenbrand,et al.  Integer Programming and Algorithmic Geometry of Numbers - A tutorial , 2010, 50 Years of Integer Programming.

[15]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[16]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[17]  Bettina Helfrich,et al.  An Algorithm to Construct Minkowski-Reduced Lattice-Bases , 1985, STACS.

[18]  M. Kochol Constructive approximation of a ball by polytopes , 1994 .

[19]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[20]  Martin Henk Note on Shortest and Nearest Lattice Vectors , 1997, Inf. Process. Lett..

[21]  Damien Stehlé,et al.  Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices , 2000, ICALP.

[22]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[23]  Phong Q. Nguyen,et al.  Sieve algorithms for the shortest vector problem are practical , 2008, J. Math. Cryptol..

[24]  J. Douglas Faires,et al.  Study Guide for Numerical Analysis , 2005 .

[25]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[26]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[27]  Kurt M. Anstreicher,et al.  Improved Complexity for Maximum Volume Inscribed Ellipsoids , 2002, SIAM J. Optim..

[28]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[29]  Martin Kochol,et al.  A note on approximation of a ball by polytopes , 2004, Discret. Optim..

[30]  Guy Kindler,et al.  Approximating CVP to Within Almost-Polynomial Factors is NP-Hard , 2003, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[31]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[32]  Daniele Micciancio,et al.  Faster exponential time algorithms for the shortest vector problem , 2010, SODA '10.

[33]  Daniele Micciancio,et al.  A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations ( Extended Abstract ) , 2009 .

[34]  Sebastian Heinz,et al.  Complexity of integer quasiconvex polynomial optimization , 2005, J. Complex..

[35]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..