Ultrahigh-resolution neutron spectroscopy of low-energy spin dynamics in UGe2

Studying the prototypical ferromagnetic superconductor UGe$_2$ we demonstrate the potential of the Modulated IntEnsity by Zero Effort (MIEZE) technique---a novel neutron spectroscopy method with ultra-high energy resolution of at least 1~$\mu$eV---for the study of quantum matter. We reveal purely longitudinal spin fluctuations in UGe$_2$ with a dual nature arising from $5f$ electrons that are hybridized with the conduction electrons. Local spin fluctuations are perfectly described by the Ising universality class in three dimensions, whereas itinerant spin fluctuations occur over length scales comparable to the superconducting coherence length, showing that MIEZE is able to spectroscopically disentangle the complex low-energy behavior characteristic of quantum materials.

[1]  N. Martin On the resolution of a MIEZE spectrometer , 2017, 1710.03056.

[2]  T. Keller,et al.  Neutron resonance spin echo with longitudinal DC fields. , 2016, The Review of scientific instruments.

[3]  Hyowon Park,et al.  Coherent band excitations in CePd3: A comparison of neutron scattering and ab initio theory , 2016, Science.

[4]  J. Kindervater,et al.  Dipolar effects on the critical fluctuations in Fe: Investigation by the neutron spin-echo technique MIEZE , 2016, 1610.09755.

[5]  E. Bauer,et al.  The valence-fluctuating ground state of plutonium , 2015, Science Advances.

[6]  D. A. Sokolov,et al.  Magnetic excitations in the ferromagnetic superconductor UGe2 under pressure , 2014 .

[7]  C. Pfleiderer,et al.  Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA , 2014, 1406.0405.

[8]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[9]  Yoshio Kuramoto,et al.  Itinerant versus localized heavy-electron magnetism. , 2013, Physical review letters.

[10]  J. Jeffries,et al.  Symmetry and correlations underlying hidden order in URu 2 Si 2 , 2012, 1212.6238.

[11]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[12]  A. Pikul,et al.  Dualism of the 5felectrons of the ferromagnetic superconductor UGe2as seen in magnetic, transport, and specific-heat data , 2012 .

[13]  C. Pfleiderer,et al.  Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets , 2012, 1205.4780.

[14]  S. Fujimoto,et al.  Superconductivity induced by longitudinal ferromagnetic fluctuations in UCoGe. , 2011, Physical review letters.

[15]  E. Bauer,et al.  Anisotropic critical magnetic fluctuations in the ferromagnetic superconductor UCoGe. , 2011, Physical review letters.

[16]  J. Iglesias,et al.  Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds , 2010, 1012.4229.

[17]  G. Luke,et al.  Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 , 2010, Nature.

[18]  D. J. Scalapino,et al.  A common thread , 2010, 1002.2413.

[19]  S. Raymond,et al.  Antiferromagnetic criticality at a heavy-fermion quantum phase transition , 2009, 1211.1418.

[20]  N. T. Huy,et al.  Effect of annealing on the magnetic and superconducting properties of single-crystalline UCoGe , 2009, 0906.0497.

[21]  C. Pfleiderer Superconducting phases of f -electron compounds , 2009, 0905.2625.

[22]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[23]  G. Laan,et al.  Nature of the 5f states in actinide metals , 2008, 0807.0416.

[24]  S. Kimura,et al.  Direct observation of dispersive Kondo resonance peaks in a heavy-fermion system. , 2008, Physical review letters.

[25]  P. Böni,et al.  RESEDA : The new resonance spin echo spectrometer using cold neutrons at the FRM-II , 2007 .

[26]  R. Fisher,et al.  Ambient-pressure specific heat of single-crystal UGe2 , 2006 .

[27]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[28]  H. Kadowaki,et al.  Quantum critical point of an itinerant antiferromagnet in a heavy fermion. , 2005, Physical review letters.

[29]  Tatsuo C. Kobayashi,et al.  Heat-capacity anomalies at T sc and T * in the ferromagnetic superconductor UGe 2 , 2004, cond-mat/0405113.

[30]  E. Ressouche,et al.  Magnetic excitations in the ferromagnetic superconductor UGe2. , 2003, Physical review letters.

[31]  C. Martin,et al.  Microphase separation in Pr0.67Ca0.33MnO3 by small-angle neutron scattering. , 2002, Physical review letters.

[32]  C. Pfleiderer,et al.  Pressure dependence of the magnetization in the ferromagnetic superconductor UGe2. , 2002, Physical review letters.

[33]  Tatsuo C. Kobayashi,et al.  A change of the Fermi surface in UGe2 across the critical pressure , 2002 .

[34]  E. Ressouche,et al.  Neutron scattering study of the ferromagnetic superconductor UGe 2 , 2001 .

[35]  T. Terashima,et al.  Evolution of quasiparticle properties in UGe(2) with hydrostatic pressure studied via the de Haas-van Alphen effect. , 2001, Physical review letters.

[36]  G. Aeppli,et al.  Onset of antiferromagnetism in heavy-fermion metals , 2000, Nature.

[37]  E. Pugh,et al.  Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 , 2000, Nature.

[38]  G. Lonzarich,et al.  P-WAVE AND D-WAVE SUPERCONDUCTIVITY IN QUASI-TWO-DIMENSIONAL METALS , 1999, cond-mat/9906091.

[39]  J. Lynn,et al.  Spin Dynamics of the Magnetoresistive Pyrochlore Tl 2 Mn 2 O 7 , 1998, cond-mat/9805131.

[40]  T. Kamiyama,et al.  Crystal Structure of UGe2 , 1996 .

[41]  Lynn,et al.  Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx(x=1,1.5). , 1995, Physical review letters.

[42]  R. Golub,et al.  Neutron resonance spin echo—a new tool for high resolution spectroscopy , 1992 .

[43]  G. Lonzarich,et al.  Magnetic excitations in ZrZn2 at low energies and long wavelengths , 1988 .

[44]  G. Lonzarich The magnetic equation of state and heat capacity in weak itinerant ferromagnets , 1986 .

[45]  L. Taillefer,et al.  Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals , 1985 .

[46]  J. Appel,et al.  Coexistence of p -state superconductivity and itinerant ferromagnetism , 1980 .

[47]  G. Squires,et al.  Introduction to the Theory of Thermal Neutron Scattering , 1978 .

[48]  L. Passell,et al.  Small-angle critical neutron scattering from cobalt , 1977 .

[49]  Bertrand I. Halperin,et al.  Theory of dynamic critical phenomena , 1977, Physics Today.

[50]  J. Als-Nielsen,et al.  Neutron scattering from the Heisenberg ferromagnets EuO and EuS. III. Spin dynamics of EuO , 1976 .

[51]  P. C. Hohenberg,et al.  Scaling Laws for Dynamic Critical Phenomena , 1969 .

[52]  R. D. Lowde,et al.  Magnetic correlations and neutron scattering , 1968 .

[53]  M. Grunwald Principles Of Condensed Matter Physics , 2016 .

[54]  A. Tsvelik Quantum Field Theory in Condensed Matter Physics: Kac–Moody algebras: Wess–Zumino–Novikov–Witten model , 2003 .

[55]  B. Gyorffy Electron a Centenary Volume , 1997 .

[56]  A. Lovins Plutonium and other actinides , 1977, Nature.

[57]  G. Shirane,et al.  CRITICAL AND SPIN-WAVE FLUCTUATIONS IN NICKEL BY NEUTRON SCATTERING. , 1969 .

[58]  and as an in , 2022 .