Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature.

[1]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[2]  Christophe Vieu,et al.  A Combined Top‐Down/Bottom‐Up Approach for the Nanoscale Patterning of Spin‐Crossover Coordination Polymers , 2007 .

[3]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[4]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[5]  J. Veciana,et al.  Old materials with new tricks: multifunctional open-framework materials. , 2007, Chemical Society reviews.

[6]  E. Colacio,et al.  Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. , 2003, Inorganic chemistry.

[7]  G. Clavel,et al.  Formation of cyano-bridged molecule-based magnetic nanoparticles within hybrid mesoporous silica , 2005 .

[8]  J. Real,et al.  Communication between iron(II) building blocks in cooperative spin transition phenomena , 2003 .

[9]  E. Rivière,et al.  Cyanide‐Bridged CrIII–NiII Superparamagnetic Nanoparticles , 2003 .

[10]  E. Collet,et al.  Structural investigation of the photoinduced spin conversion in the dinuclear compound {[Fe(bt)(NCS)2]2(bpym)}: toward controlled multi‐stepped molecular switches , 2007 .

[11]  Yann Garcia,et al.  Spin crossover in Mn(II), Mn(III), Cr(II) and Co(III) coordination compounds, In Spin crossover in transition metal compounds II, Eds. P. Gütlich, H.A. Goodwin , 2004 .

[12]  I. Imaz,et al.  Valence-tautomeric metal-organic nanoparticles. , 2008, Angewandte Chemie.

[13]  S. Mann,et al.  Molecule-Based Magnetic Nanoparticles: Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions , 2002 .

[14]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[15]  A. Stiegman,et al.  Transparent, Superparamagnetic KCo[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism , 2003 .

[16]  G. Clavel,et al.  Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids. , 2006, Chemistry.

[17]  Shuji Abe,et al.  Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model. , 2005, Chemical communications.

[18]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[19]  Takashi Kato Self-Assembly of Phase-Segregated Liquid Crystal Structures , 2002, Science.

[20]  A. Hauser,et al.  Thermisch und optisch schaltbare Eisen(II)‐Komplexe , 1994 .

[21]  E. Collet,et al.  Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe (bt ) (NCS )2]2 (bpym )} , 2007 .

[22]  O. Stéphan,et al.  Superparamagnetic bimetallic cyanide-bridged coordination nanoparticles with TB = 9 K. , 2006, Chemical communications.

[23]  A. Stiegman,et al.  Transparent, Superparamagnetic K${{{\rm I}\hfill \atop x\hfill}}$Co${{{\rm II}\hfill \atop y\hfill}}$[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism , 2003 .

[24]  M. Oh,et al.  Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles. , 2008, Angewandte Chemie.

[25]  A. Zwick,et al.  Metal dilution effects on the spin-crossover properties of the three-dimensional coordination polymer Fe(pyrazine)[Pt(CN)4]. , 2005, The journal of physical chemistry. B.

[26]  A. Zwick,et al.  Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases. , 2005, Physical review letters.

[27]  J. Eastoe,et al.  Recent advances in nanoparticle synthesis with reversed micelles. , 2006, Advances in colloid and interface science.

[28]  J. McGarvey,et al.  One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2){Pt(CN)4}] at room temperature. , 2005, Angewandte Chemie.

[29]  Olivier Kahn,et al.  Spin Transition Molecular Materials for displays and data recording , 1992 .

[30]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[31]  J. Real,et al.  Tunable Bistability in a Three‐Dimensional Spin‐Crossover Sensory‐ and Memory‐Functional Material , 2005 .

[32]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[33]  P. Gütlich,et al.  Multifunctionality in spin crossover materials , 2005 .

[34]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[35]  O. Stéphan,et al.  Photomagnetic nanorods of the Mo(CN)8Cu2 coordination network. , 2005, Chemical communications.

[36]  J. Real,et al.  Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). , 2001, Inorganic chemistry.

[37]  Mei Li,et al.  Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions , 2000 .

[38]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[39]  T. Uemura,et al.  Prussian blue nanoparticles protected by poly(vinylpyrrolidone). , 2003, Journal of the American Chemical Society.

[40]  G. Molnár,et al.  Multilayer sequential assembly of thin films that display room-temperature spin crossover with hysteresis. , 2006, Angewandte Chemie.

[41]  A. Hauser Light-induced spin crossover and the high-spin→low-spin relaxation , 2004 .