Nb/Ta and Zr/Hf in ocean island basalts — Implications for crust–mantle differentiation and the fate of Niobium

[1]  K. Haase,et al.  Magma Evolution of the Sete Cidades Volcano, Sao Miguel, Azores , 2006 .

[2]  T. M. Harrison,et al.  Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga , 2005, Science.

[3]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[4]  B. Wood,et al.  Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean , 2005, Nature.

[5]  J. Adam,et al.  Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis , 2005 .

[6]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[7]  T. Kleine,et al.  The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion , 2004 .

[8]  K. Haase,et al.  Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Sm-Nd isotope systematics , 2004 .

[9]  R. Vannucci,et al.  The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes , 2004 .

[10]  G. Wörner,et al.  Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas , 2004 .

[11]  J. Vervoort,et al.  Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth , 2004 .

[12]  M. Hirschmann,et al.  Experimental determination of trace element partitioning between garnet and silica‐rich liquid during anhydrous partial melting of MORB‐like eclogite , 2004 .

[13]  K. Farley,et al.  Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan Volcanic Chain , 2004 .

[14]  M. Norman,et al.  Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core , 2004, Nature.

[15]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[16]  M. Norman,et al.  Growth of early continental crust by partial melting of eclogite , 2003, Nature.

[17]  B. Wood,et al.  Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa , 2003 .

[18]  T. Kleine,et al.  Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics , 2003, Science.

[19]  D. Rubatto,et al.  Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones , 2003 .

[20]  B. Bourdon,et al.  146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle , 2003, Nature.

[21]  J. Bodinier,et al.  Nb/Ta geochemical reservoirs , 2003 .

[22]  V. Salters,et al.  Recycling oceanic crust: Quantitative constraints , 2003 .

[23]  K. Mezger,et al.  Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system , 2003 .

[24]  B. Stoll,et al.  Niobium in Planetary Cores: Consequences for the Interpretation of Terrestrial Nb Systematics , 2002 .

[25]  H. Keppler,et al.  Melt composition control of Zr/Hf fractionation in magmatic processes , 2002 .

[26]  B. Wood,et al.  Experimental constraints on major and trace element partitioning during partial melting of eclogite , 2002 .

[27]  M. Bizzarro,et al.  Hf isotope evidence for a hidden mantle reservoir , 2002 .

[28]  M. Rehkämper,et al.  Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS , 2002 .

[29]  J. Longhi,et al.  Near mantle solidus trace element partitioning at pressures up to 3.4 GPa , 2002 .

[30]  M. Tiepolo,et al.  Growth of early continental crust controlled by melting of amphibolite in subduction zones , 2002, Nature.

[31]  D. Ionov,et al.  HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites , 2002 .

[32]  C. Devey,et al.  The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot , 2002 .

[33]  T. Zack,et al.  Trace element abundances in rutiles from eclogites and associated garnet mica schists , 2002 .

[34]  K. Mezger,et al.  Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements , 2001 .

[35]  J. Blichert‐Toft,et al.  A hafnium isotope and trace element perspective on melting of the depleted mantle , 2001 .

[36]  B. Wood,et al.  High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities , 2001 .

[37]  B. Wood,et al.  The Earth's ‘missing’ niobium may be in the core , 2001, Nature.

[38]  K. Sims,et al.  Assessing the presence of garnet‐pyroxenite in the mantle sources of basalts through combined hafnium‐neodymium‐thorium isotope systematics , 2000 .

[39]  N. Shackleton,et al.  Constraints on astronomical parameters from the geological record for the last 25 Myr , 2000 .

[40]  K. David,et al.  Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes , 2000 .

[41]  B. Kamber,et al.  Role of ‘hidden’ deeply subducted slabs in mantle depletion , 2000 .

[42]  W. McDonough,et al.  Tracking the budget of Nb and Ta in the continental crust , 2000 .

[43]  F. Albarède,et al.  Hf–Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle , 2000, Nature.

[44]  M. Tiepolo,et al.  Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems , 2000 .

[45]  K. Jochum,et al.  Niobium and tantalum in carbonaceous chondrites: Constraints on the solar system and primitive mantle niobium/tantalum, zirconium/niobium, and niobium/uranium ratio , 2000 .

[46]  G. Jenner,et al.  Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas , 2000 .

[47]  R. Carlson,et al.  Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones , 2000 .

[48]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[49]  F. Albarède,et al.  Hf isotope evidence for pelagic sediments in the source of hawaiian basalts , 1999, Science.

[50]  W. J. Morgan,et al.  Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding , 1999 .

[51]  W. Westrenen,et al.  Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt , 1999 .

[52]  R. Vannucci,et al.  Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt , 1999 .

[53]  J. Longhi,et al.  Trace element partitioning during the initial stages of melting beneath mid-ocean ridges , 1999 .

[54]  K. Johnson Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures , 1998 .

[55]  B. Wood,et al.  Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus , 1998 .

[56]  C. Münker Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques , 1998 .

[57]  W. McDonough,et al.  Contrasting old and young volcanism in Rurutu Island, Austral chain , 1997 .

[58]  R. Batiza,et al.  Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle , 1997 .

[59]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[60]  K. Sims,et al.  INFERENCES ABOUT MANTLE MAGMA SOURCES FROM INCOMPATIBLE ELEMENT CONCENTRATION RATIOS IN OCEANIC BASALTS , 1997 .

[61]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[62]  A. Hofmann,et al.  Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts , 1996 .

[63]  V. Salters The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective , 1996 .

[64]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[65]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[66]  G. Jenner,et al.  Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt , 1994 .

[67]  A. Hofmann,et al.  himu-em: The French Polynesian connection , 1992 .

[68]  D. McKenzie,et al.  Partial melt distributions from inversion of rare earth element concentrations , 1991 .

[69]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[70]  A. Hofmann,et al.  Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution , 1982, Nature.

[71]  M. Tiepolo,et al.  Fractionation of Nb and Ta from Zr and Hf at Mantle Depths: the Role of Titanian Pargasite and Kaersutite , 2001 .

[72]  M. Hirschmann,et al.  A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB , 1996 .

[73]  S. Hart,et al.  Experimental cpx/melt partitioning of 24 trace elements , 1993 .