Foveated ROI Compression with Hierarchical Trees for Real-Time Video Transmission

Region of interest (ROI) based compression can be applied to real-time video transmission in medical or surveillance applications where certain areas are needed to retain better quality than the rest of the image. The use of a fovea combined with ROI for image compression can help to improve the perception of quality and preserve different levels of detail around the ROI. In this paper, a fovea-ROI compression approach is proposed based on the Set Partitioning In Hierarchical Tree (SPIHT) algorithm. Simulation results show that the proposed approach presents better details in objects inside the defined ROI than the standard SPIHT algorithm.

[1]  Oleg Starostenko,et al.  DWT foveation-based multiresolution compression algorithm , 2010 .

[2]  Piyu Tsai Tree Structure Based Data Hiding for Progressive Transmission Images , 2010, Fundam. Informaticae.

[3]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[4]  Iulian B. Ciocoiu,et al.  ECG signal compression using 2D wavelet foveation , 2009, ICHIT '09.

[5]  Bernd Girod,et al.  Distributed Video Coding , 2005, Proceedings of the IEEE.

[6]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[7]  Lajos Hanzo,et al.  Voice Compression and Communications , 2001 .

[8]  Alan C. Bovik,et al.  Fast algorithms for foveated video processing , 2003, IEEE Trans. Circuits Syst. Video Technol..

[9]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[10]  Warnakulasuriya Anil Chandana Fernando,et al.  Distributed Video Coding using Turbo Trellis Coded Modulation , 2008, The Visual Computer.

[11]  Ping-Sing Tsai,et al.  JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures , 2004 .

[12]  Aysegül Çuhadar,et al.  Multiple arbitrary shape ROI coding with zerotree based wavelet coders , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[13]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[14]  Alan C. Bovik,et al.  The Essential Guide to Video Processing , 2009, J. Electronic Imaging.

[15]  Ee-Chien Chang,et al.  A wavelet approach to foveating images , 1997, SCG '97.

[16]  Tinku Acharya,et al.  JPEG2000 standard for image compression , 2004 .

[17]  L. D. Silverstein FOUNDATIONS OF VISION , 1996 .

[18]  Lajos Hanzo,et al.  Video Compression and Communications: From Basics to H.261, H.263, H.264, MPEG4 for DVB and HSDPA-Style Adaptive Turbo-Transceivers , 2007 .

[19]  J.C. Galan-Hernandez,et al.  Wavelet-Based Foveated Compression Algorithm for Real-Time Video Processing , 2010, 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference.

[20]  Hyun Wook Park,et al.  Region-of-interest coding based on set partitioning in hierarchical trees , 2002, IEEE Trans. Circuits Syst. Video Technol..

[21]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[22]  Louis D. Silverstein Foundations of Vision, by Brian A. Wandell, Sinauer Associates, Inc., Sunderland, MA, 1995. xvi + 476 pp., hardcover $49.95. , 2008 .