The Conditional Probability Density Function for a Reflected Brownian Motion

Models in economics and other fields often require a restricted Brownian motion because frequently implicit or explicit barriers restrict the domain. This paper contributes to the literature on reflected Brownian motion by deriving its conditional density function as a closed-form expression that consists of infinite sums of Gaussian densities. This solution is compared with an alternative, trigonometric expression derived earlier. Numerical analyses reveal that convergence properties of the expression derived in this paper are superior to those of the alternative representation for most practically relevant set-ups. Despite the complex appearance of the density formula, its use only requires fractions of a second on simple desktop computers such that, next to the theoretical appeal, also practicability is guaranteed.

[1]  Testing for bubbles, reflecting barriers and other anomalies☆ , 1988 .

[2]  Robert F. Tichy,et al.  A process with stochastic claim frequency and a linear dividend barrier , 1999 .

[3]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  H. Gerber,et al.  The Wiener process with drift between a linear retaining and an absorbing barrier , 1981 .

[6]  E. C. Titchmarsh Introduction to the Theory of Fourier Integrals , 1938 .

[7]  Albert Einstein,et al.  Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005 .

[8]  Vidyadhar G. Kulkarni,et al.  Second-Order Fluid Flow Models: Reflected Brownian Motion in a Random Environment , 1995, Oper. Res..

[9]  C. Tapiero Applied Stochastic Models and Control for Finance and Insurance , 1998 .

[10]  F. Jong A univariate analysis of EMS exchange rates using a target zone model , 1994 .

[11]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[12]  Ricardo J. Caballero,et al.  Irreversibility and Aggregate Investment , 1991 .

[13]  N. Goel,et al.  Stochastic models in biology , 1975 .

[14]  Ward Whitt,et al.  Transient behavior of regulated Brownian motion, II: Non-zero initial conditions , 1987 .

[15]  J. Michael Harrison,et al.  Instantaneous Control of Brownian Motion , 1983, Math. Oper. Res..

[16]  L. Ricciardi,et al.  On the probability densities of an Ornstein–Uhlenbeck process with a reflecting boundary , 1987, Journal of Applied Probability.

[17]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[18]  E. L. Ince Ordinary differential equations , 1927 .

[19]  W. Whitt,et al.  Transient behavior of regulated Brownian motion, I: Starting at the origin , 1987, Advances in Applied Probability.

[20]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[21]  M. Smoluchowski,et al.  Über Brown'sche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung , 1916 .

[22]  Robert P. Flood,et al.  An Empirical Exploration of Exchange Rate Target-Zones , 1990, SSRN Electronic Journal.

[23]  J. Harrison,et al.  Brownian motion and stochastic flow systems , 1986 .

[24]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[25]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[26]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[27]  Charles S. Tapiero Applied stochastic models and control in management , 1988 .

[28]  James H. Hilker,et al.  Hedging with Futures and Options under a Truncated Cash Price Distribution , 1999, Journal of Agricultural and Applied Economics.

[29]  Lars E. O. Svensson,et al.  The Term Structure of Interest Rate Differentials in a Target Zone: Theory and Swedish Data , 1990 .

[30]  P. Krugman,et al.  Target Zones and Exchange Rate Dynamics , 1991 .

[31]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[32]  D. Sappington,et al.  Setting the X Factor in Price-Cap Regulation Plans , 1998 .

[33]  J. Harrison,et al.  On the distribution of m ultidimen-sional reflected Brownian motion , 1981 .

[34]  Hans U. Gerber,et al.  On the probability of ruin in the presence of a linear dividend barrier , 1981 .

[35]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[36]  L. M. Ricciardi,et al.  On some diffusion approximations to queueing systems , 1986, Advances in Applied Probability.