Hybrid orientation technology and strain engineering for ultra-high speed MOSFETs

We report here RF MOSFET performance in sub-45-nm hybrid orientation CMOS technology. Based on the combination of hybrid orientation technology (HOT) and process-induced local strain engineering, MOSFET RF performance is investigated using CAD (TCAD) technology. Transistor optimization on (100) substrate via silicon nitride (Si3N4) cap layer thickness for n-MOSFETs, Ge mole fraction optimization for p-MOSFETs on (110) substrates and channel length scaling have resulted in record RF performance, viz. the cut-off frequency, ${f_{\rm T}}$.

[1]  D. Schumann,et al.  Vertical N-channel MOSFETs for extremely high density memories: the impact of interface orientation on device performance , 2001 .

[2]  S. Takagi,et al.  On the Universality of Inversion Layer Mobility in Si Mosfet's: Part 11-effects of Surface Orientation , 1994 .

[3]  C. K. Maiti EditorialSpecial issue on strained-si heterostructures and devices , 2004 .

[4]  Shinichi Takagi,et al.  High-performance (110)-surface strained-SOI MOSFETs , 2005 .

[5]  Krishna C. Saraswat,et al.  Influence of process-induced stress on device characteristics and its impact on scaled device performance , 1999 .

[6]  Hisashi Hara,et al.  Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces , 1971 .

[7]  D. Chidambarrao,et al.  Strain effects on device characteristics: Implementation in drift-diffusion simulators , 1993 .

[8]  A. Chou,et al.  Hybrid-orientation technology (HOT): opportunities and challenges , 2006, IEEE Transactions on Electron Devices.

[9]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[10]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[11]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[12]  Y. Kanda,et al.  A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.

[13]  Xiaopeng Xu,et al.  Modeling the impact of stress on silicon processes and devices , 2003 .

[14]  N. Sugiyama,et al.  [110]-surface strained-SOI CMOS devices , 2005, IEEE Transactions on Electron Devices.

[15]  M. Bohr,et al.  A logic nanotechnology featuring strained-silicon , 2004, IEEE Electron Device Letters.

[16]  J. A. Hutchby,et al.  Special Issue on Nonclassical Si CMOS Devices and Technologies: Extending the Roadmap , 2006 .

[17]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[18]  J. Sleight,et al.  Strained ultrahigh performance fully depleted nMOSFETs with f/sub t/ of 330 GHz and sub-30-nm gate lengths , 2006, IEEE Electron Device Letters.

[19]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .