Bivariate Estimator for cDNA Microarray Images Using Complex Wavelets

Removal of noise is an essential step in the preprocessing of microarray images for obtaining betterquality gene expression measurements. Wavelet-based methods for denoising of images are very successful. However, for cDNA microarray images, existing methods are not as efficient because they fail to take into account linear dependencies that exist between wavelet coefficients of the red and green channel images. To address this issue, a bivariate MAP estimator is proposed in the complex wavelet transform (CWT) domain that jointly estimates wavelet coefficients in the two channels. The CWT is preferable to the traditional discrete wavelet transform for denoising of microarray images owing to its good directional selectivity and shift-invariance properties. Both properties ensure better detection of edges in the spots. The proposed method is compared with other locallyadaptive CWT-based denoising techniques using simulation experiments. Results show that our method achieves improved noise reduction performance as compared to others in terms of the mean squared error.

[1]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[2]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[3]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[4]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[5]  Mario Mastriani,et al.  Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain , 2007, 1807.11571.

[6]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[7]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[8]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[9]  Mário A. T. Figueiredo,et al.  Wavelet-Based Image Estimation : An Empirical Bayes Approach Using Jeffreys ’ Noninformative Prior , 2001 .

[10]  Adhemar Bultheel,et al.  Empirical Bayes Approach to Improve Wavelet Thresholding for Image Noise Reduction , 2001 .

[11]  Rastislav Lukac,et al.  APPLICATION OF THE ADAPTIVE CENTER-WEIGHTED VECTOR MEDIAN FRAMEWORK FOR THE ENHANCEMENT OF CDNA MICROARRAY IMAGES , 2003 .

[12]  R.S.H. Istepanian,et al.  Microarray image enhancement by denoising using stationary wavelet transform , 2003, IEEE Transactions on NanoBioscience.

[13]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[14]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[16]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[17]  Robert D. Nowak,et al.  Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior , 2001, IEEE Trans. Image Process..

[18]  I. Selesnick Hilbert transform pairs of wavelet bases , 2001, IEEE Signal Processing Letters.

[19]  Caroline Chaux,et al.  Image analysis using a dual-tree M-band wavelet transform , 2006, IEEE Transactions on Image Processing.

[20]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[21]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.

[22]  Pierre Moulin,et al.  Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients , 2001, IEEE Trans. Image Process..

[23]  R M Rangayyan,et al.  Adaptive-neighborhood filtering of images corrupted by signal-dependent noise. , 1998, Applied optics.

[24]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  S.W. Davies,et al.  DNA microarray stochastic model , 2005, IEEE Transactions on NanoBioscience.

[26]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[27]  G. Magoulas,et al.  Improved processing of microarray data using image reconstruction techniques , 2003, IEEE Transactions on NanoBioscience.

[28]  Ivan W. Selesnick,et al.  The design of approximate Hilbert transform pairs of wavelet bases , 2002, IEEE Trans. Signal Process..

[29]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[30]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[31]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[32]  G. Nason,et al.  Real nonparametric regression using complex wavelets , 2004 .

[33]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[34]  Aidong Zhang,et al.  Advanced Analysis of Gene Expression Microarray Data , 2006, Science, Engineering, and Biology Informatics.

[35]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[36]  Alin Achim,et al.  Image denoising using bivariate α-stable distributions in the complex wavelet domain , 2005, IEEE Signal Processing Letters.

[37]  Diego Clonda,et al.  Complex Daubechies wavelets: properties and statistical image modelling , 2004, Signal Process..

[38]  C. Sidney Burrus,et al.  A new framework for complex wavelet transforms , 2003, IEEE Trans. Signal Process..

[39]  S. Mallat A wavelet tour of signal processing , 1998 .

[40]  J. Olkkonen,et al.  Hilbert transform assisted complex wavelet transform for neuroelectric signal analysis , 2006, Journal of Neuroscience Methods.

[41]  Ernst Wit,et al.  Statistics for Microarrays : Design, Analysis and Inference , 2004 .

[42]  Geoffrey J. McLachlan,et al.  Analyzing Microarray Gene Expression Data , 2004 .

[43]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[44]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[45]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .