Trigonometric series and self-similar sets

Let $F$ be a self-similar set on $\mathbb{R}$ associated to contractions $f_j(x) = r_j x + b_j$, $j \in \mathcal{A}$, for some finite $\mathcal{A}$, such that $F$ is not a singleton. We prove that if $\log r_i / \log r_j$ is irrational for some $i \neq j$, then $F$ is a set of multiplicity, that is, trigonometric series are not in general unique in the complement of $F$. No separation conditions are assumed on $F$. We establish our result by showing that every self-similar measure $\mu$ on $F$ is a Rajchman measure: the Fourier transform $\widehat{\mu}(\xi) \to 0$ as $|\xi| \to \infty$. The rate of $\widehat{\mu}(\xi) \to 0$ is also shown to be logarithmic if $\log r_i / \log r_j$ is diophantine for some $i \neq j$. The proof is based on quantitative renewal theorems for random walks on $\mathbb{R}$.

[1]  P. Erdös On the Smoothness Properties of a Family of Bernoulli Convolutions , 1940 .

[2]  M. Queffélec Analyse de Fourier des fractions continues a quotients restreints , 2003 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  Tuomas Sahlsten,et al.  Fourier transforms of Gibbs measures for the Gauss map , 2013, 1312.3619.

[5]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[6]  Robert Kaufman,et al.  Continued fractions and Fourier transforms , 1980 .

[7]  Tuomas Sahlsten,et al.  Fourier transform of self-affine measures , 2019, 1903.09601.

[8]  I. Łaba,et al.  Arithmetic Progressions in Sets of Fractional Dimension , 2007, 0712.3882.

[9]  G. Cantor,et al.  Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .

[10]  B. Solomyak,et al.  On the modulus of continuity for spectral measures in substitution dynamics , 2013, 1305.7373.

[11]  Tuomas Sahlsten,et al.  Fourier decay in nonlinear dynamics , 2018, 1810.01378.

[12]  R. Kaufman On the theorem of Jarník and Besicovitch , 1981 .

[13]  Jialun Li Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple Lie groups , 2018, Annales scientifiques de l'École Normale Supérieure.

[14]  P. Shmerkin,et al.  Spatially independent martingales, intersections, and applications , 2014, 1409.6707.

[15]  J. Kahane Sets of uniqueness and sets of multiplicity , 2002 .

[16]  X. Dai When does a Bernoulli convolution admit a spectrum , 2012 .

[17]  M. Hochman,et al.  Hausdorff dimension of planar self-affine sets and measures , 2017, Inventiones mathematicae.

[18]  J. Fraser,et al.  On the Fourier analytic structure of the Brownian graph , 2015, 1506.03773.

[19]  Spectra of Bernoulli convolutions as multipliers in Lp on the circle , 2002, math/0210053.

[20]  Spectra of singular measures as multipliers on Lp , 1980 .

[21]  J. Bourgain The discretized sum-product and projection theorems , 2010 .

[22]  Ka-Sing Lau,et al.  Multifractal formalism for self-similar measures with weak separation condition , 2009 .

[23]  Sur l'unicité du développement trigonométrique , 1927 .

[24]  M. Hochman,et al.  Equidistribution from fractal measures , 2013, 1302.5792.

[25]  J. Bourgain,et al.  Fourier dimension and spectral gaps for hyperbolic surfaces , 2017, Geometric and Functional Analysis.

[26]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[27]  R. Strichartz Self-similar measures and their Fourier transforms. II , 1993 .

[28]  Pablo Shmerkin,et al.  On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions , 2013, 1303.3992.

[29]  Michael Hochman,et al.  On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.

[30]  Jean-Baptiste Boyer The speed of convergence in the renewal theorem , 2015, 1506.07625.

[31]  P. Mattila Fourier Analysis and Hausdorff Dimension , 2015 .

[32]  Decrease of Fourier coefficients of stationary measures , 2017, Mathematische Annalen.

[33]  Sur la distribution de certaines séries aléatoires , 1971 .

[34]  R. Salem Sets of uniqueness and sets of multiplicity , 1943 .

[35]  Yang Wang,et al.  Refinable functions with non-integer dilations , 2007 .

[36]  J. Fraser,et al.  On Fourier Analytic Properties of Graphs , 2012, 1211.4803.

[37]  E. Breuillard,et al.  On the dimension of Bernoulli convolutions , 2016, The Annals of Probability.

[38]  A. Baker Transcendental Number Theory , 1975 .

[39]  On the dimension of Bernoulli convolutions for all transcendental parameters , 2018, Annals of Mathematics.

[40]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[41]  M. Tsujii On the Fourier transforms of self-similar measures , 2012, 1212.1553.