Linear Programming Approach to Deterministic Long Run Average Problems of Optimal Control

We establish that deterministic long run average problems of optimal control are "asymptotically equivalent" to infinite-dimensional linear programming problems (LPPs) and we establish that these LPPs can be approximated by finite-dimensional LPPs, the solutions of which can be used for construction of the optimal controls. General results are illustrated with numerical examples.

[1]  R. Stockbridge Time-Average Control of Martingale Problems: Existence of a Stationary Solution , 1990 .

[2]  H. Kushner Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems , 1990 .

[3]  Fritz Colonius Optimal Periodic Control , 1988 .

[4]  Vladimir Gaitsgory,et al.  On a Representation of the Limit Occupational Measures Set of a Control System with Applications to Singularly Perturbed Control Systems , 2004, SIAM J. Control. Optim..

[5]  Arie Leizarowitz,et al.  Order Reduction Is Invalid for Singularly Perturbed Control Problems with a Vector Fast Variable , 2002, Math. Control. Signals Syst..

[6]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[7]  Z. Artstein INVARIANT MEASURES AND THEIR PROJECTIONS IN NONAUTONOMOUS DYNAMICAL SYSTEMS , 2004 .

[8]  G. Yin,et al.  Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach , 1997 .

[9]  Z. Artstein,et al.  The Value Function of Singularly Perturbed Control Systems , 2000 .

[10]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[11]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[12]  Vladimir Gaitsgory,et al.  Multiscale Singularly Perturbed Control Systems: Limit Occupational Measures Sets and Averaging , 2002, SIAM J. Control. Optim..

[13]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[14]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[15]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[16]  Asen L. Dontchev,et al.  Singular Perturbations in Infinite-Dimensional Control Systems , 2003, SIAM J. Control. Optim..

[17]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[18]  O. Hernández-Lerma,et al.  Markov chains and invariant probabilities , 2003 .

[19]  G. Grammel On Nonlinear Control Systems with Multiple Time Scales , 2004 .

[20]  L. Grüne On the Relation between Discounted and Average Optimal Value Functions , 1998 .

[21]  José G. Llavona,et al.  Approximation of Continuously Differentiable Functions , 1986 .

[22]  Diogo A. Gomes,et al.  Linear programming interpretations of Mather's variational principle , 2002 .

[23]  B. Craven Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.

[24]  J. Warga Optimal control of differential and functional equations , 1972 .

[25]  Wolfgang Kliemann,et al.  Infinite time optimal control and periodicity , 1989 .

[26]  Vladimir Gaitsgory Suboptimal control of singularly perturbed systems and periodic optimization , 1993, IEEE Trans. Autom. Control..

[27]  M. Quincampoix,et al.  Averaging method for discontinuous Mayer's problem of singularly perturbed control systems , 2003 .

[28]  Desineni S Naidu,et al.  Singular perturbations and time scales in control theory and applications: An overview , 2002 .

[29]  Gopal K. Basak,et al.  Ergodic control of degenerate diffusions , 1997 .

[30]  F. Rampazzo,et al.  Filippov's and Filippov–Ważewski's Theorems on Closed Domains , 2000 .

[31]  Y. Kabanov,et al.  Two-scale stochastic systems , 2002 .

[32]  R. O'Malley Singular perturbations and optimal control , 1978 .

[33]  Qing Zhang,et al.  Continuous-Time Markov Chains and Applications , 1998 .

[34]  R. Stockbridge,et al.  Approximation of Infinite-Dimensional Linear Programming Problems which Arise in Stochastic Control , 1998 .

[35]  Hitoshi Ishii,et al.  A Characterization of the Existence of Solutions for Hamilton—Jacobi Equations in Ergodic Control Problems with Applications , 2000 .

[36]  Z. Artstein Anoccupational measure solution to a singularly perturbed optimal control problem , 2002 .

[37]  R. Stockbridge Time-Average Control of Martingale Problems: A Linear Programming Formulation , 1990 .

[38]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[39]  Brian D. O. Anderson,et al.  Optimal control problems over large time intervals , 1987, Autom..

[40]  F. Colonius,et al.  Controllability for Systems with Slowly Varying Parameters , 2003 .

[41]  R. Stockbridge,et al.  Numerical Comparison of Controls and Verification of Optimality for Stochastic Control Problems , 2000 .

[42]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[43]  V. Gaitsgory Suboptimization of singularly perturbed control systems , 1992 .

[44]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .