Inferring Gene Regulatory Networks from Expression Data using Ensemble Methods

Inferring Gene Regulatory Networks from Expression Data using Ensemble methods

[1]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[2]  Ralf Zimmer,et al.  Inferring gene regulatory networks by ANOVA , 2012, Bioinform..

[3]  Pedro Mendes,et al.  Artificial gene networks for objective comparison of analysis algorithms , 2003, ECCB.

[4]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[5]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[6]  Satoru Miyano,et al.  Inferring gene networks from time series microarray data using dynamic Bayesian networks , 2003, Briefings Bioinform..

[7]  Leo Breiman,et al.  Prediction Games and Arcing Algorithms , 1999, Neural Computation.

[8]  Haidong Wang,et al.  Discovering molecular pathways from protein interaction and gene expression data , 2003, ISMB.

[9]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[10]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[11]  Patrik D'haeseleer,et al.  Linear Modeling of mRNA Expression Levels During CNS Development and Injury , 1998, Pacific Symposium on Biocomputing.

[12]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[13]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[14]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[15]  Kathleen Marchal,et al.  SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.

[16]  Michael R. Brent,et al.  Benchmarking regulatory network reconstruction with GRENDEL , 2009, Bioinform..

[17]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[18]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[19]  Satoru Miyano,et al.  Inferring qualitative relations in genetic networks and metabolic pathways , 2000, Bioinform..

[20]  Vipin Kumar,et al.  Chapman & Hall/CRC Data Mining and Knowledge Discovery Series , 2008 .

[21]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Tomasz Arodz,et al.  ENNET: inferring large gene regulatory networks from expression data using gradient boosting , 2013, BMC Systems Biology.

[23]  G. Altay,et al.  Structural influence of gene networks on their inference: analysis of C3NET. , 2011 .

[24]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[25]  Diego di Bernardo,et al.  Robust Identification of Large Genetic Networks , 2003, Pacific Symposium on Biocomputing.

[26]  A. G. de la Fuente,et al.  From Knockouts to Networks: Establishing Direct Cause-Effect Relationships through Graph Analysis , 2010, PloS one.

[27]  Paola Lecca,et al.  Biological network inference for drug discovery. , 2013, Drug discovery today.

[28]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[29]  Leo Breiman,et al.  Randomizing Outputs to Increase Prediction Accuracy , 2000, Machine Learning.

[30]  Xing-Ming Zhao,et al.  NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference , 2013, Bioinform..

[31]  Florence d'Alché-Buc,et al.  OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks , 2013, Bioinform..

[32]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[33]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[34]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1995, COLT '90.

[35]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[36]  Dario Floreano,et al.  GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..

[37]  Araceli M. Huerta,et al.  Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. , 2003, Genome research.

[38]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[39]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[40]  J. Friedman Stochastic gradient boosting , 2002 .

[41]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[42]  Tomasz Arodz,et al.  ADANET: inferring gene regulatory networks using ensemble classifiers , 2012, BCB.

[43]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[44]  K M Kyoda,et al.  A gene network inference method from continuous-value gene expression data of wild-type and mutants. , 2000, Genome informatics. Workshop on Genome Informatics.

[45]  D. Bernardo,et al.  A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches , 2009, Cell.

[46]  Daniel E. Newburger,et al.  High-resolution DNA-binding specificity analysis of yeast transcription factors. , 2009, Genome research.

[47]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[48]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[49]  Diogo F. Veiga,et al.  Network inference and network response identification: moving genome-scale data to the next level of biological discovery. , 2010, Molecular bioSystems.

[50]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[51]  Margaret Werner-Washburne,et al.  A system for generating transcription regulatory networks with combinatorial control of transcription , 2008, Bioinform..

[52]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[53]  Nir Friedman,et al.  Inferring quantitative models of regulatory networks from expression data , 2004, ISMB/ECCB.

[54]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[55]  Dario Floreano,et al.  Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods , 2009, J. Comput. Biol..

[56]  Diogo M. Camacho,et al.  Systems Biology Strikes Gold , 2009, Cell.

[57]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[58]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[59]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[60]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[61]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[63]  Tom Michoel,et al.  Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests , 2012, Bioinform..

[64]  Ralf Herwig,et al.  GeNGe: systematic generation of gene regulatory networks , 2009, Bioinform..

[65]  N. D. Clarke,et al.  Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges , 2010, PloS one.

[66]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[67]  Kevin Y. Yip,et al.  Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data , 2010, PloS one.

[68]  Timothy S Gardner,et al.  Reverse-engineering transcription control networks. , 2005, Physics of life reviews.

[69]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[70]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[71]  Claudio Cobelli,et al.  A Gene Network Simulator to Assess Reverse Engineering Algorithms , 2009, Annals of the New York Academy of Sciences.

[72]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[73]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[74]  Pat Langley,et al.  Induction of One-Level Decision Trees , 1992, ML.

[75]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[76]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[77]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[78]  M. Reinders,et al.  Genetic network modeling. , 2002, Pharmacogenomics.

[79]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[80]  J. Roach,et al.  Statistical analysis of MPSS measurements: application to the study of LPS-activated macrophage gene expression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Witold Pedrycz,et al.  Data Mining: A Knowledge Discovery Approach , 2007 .

[82]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[83]  E. P. van Someren Searching for Limited Connectivity in Genetic Network Models , 2004 .

[84]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[85]  Wei-Po Lee,et al.  Computational methods for discovering gene networks from expression data , 2009, Briefings Bioinform..

[86]  D. Floreano,et al.  Revealing strengths and weaknesses of methods for gene network inference , 2010, Proceedings of the National Academy of Sciences.

[87]  Richard A. Olshen,et al.  CART: Classification and Regression Trees , 1984 .

[88]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[89]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[90]  Jean-Philippe Vert,et al.  TIGRESS: Trustful Inference of Gene REgulation using Stability Selection , 2012, BMC Systems Biology.

[91]  George C. Runger,et al.  Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination , 2009, J. Mach. Learn. Res..

[92]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[93]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[94]  F. Doyle,et al.  A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. , 2004, Genome research.

[95]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[96]  Ben Taskar,et al.  Rich probabilistic models for gene expression , 2001, ISMB.

[97]  Adam A. Margolin,et al.  Reverse engineering cellular networks , 2006, Nature Protocols.