Asymptotic stochastic dominance rules for sums of i.i.d. random variables
暂无分享,去创建一个
Sergio Ortobelli Lozza | Tommaso Lando | Tomás Tichý | Filomena Petronio | S. O. Lozza | T. Tichý | T. Lando | Filomena Petronio
[1] Anna K. Panorska,et al. Generalized stable models for financial asset returns , 1996 .
[2] Svetlozar T. Rachev,et al. The basics of financial econometrics : tools, concepts, and asset management applications , 2014 .
[3] S. O. Lozza,et al. Dominance among financial markets , 2014 .
[4] H. L. MacGillivray,et al. Skewness and Asymmetry: Measures and Orderings , 1986 .
[5] Michel Denuit,et al. Actuarial Theory for Dependent Risks: Measures, Orders and Models , 2005 .
[6] Svetlozar T. Rachev,et al. Safety-first analysis and stable paretian approach to portfolio choice theory , 2001 .
[7] Svetlozar T. Rachev,et al. Financial Econometrics: From Basics to Advanced Modeling Techniques , 2006 .
[8] J. Nolan,et al. Maximum likelihood estimation and diagnostics for stable distributions , 2001 .
[9] E. Fama. Mandelbrot and the Stable Paretian Hypothesis , 1963 .
[10] S. Rachev,et al. Stable Paretian Models in Finance , 2000 .
[11] Stoyan Stoyanov,et al. Portfolio selection with heavy tailed distributions , 2005 .
[12] Mark E. J. Newman,et al. Power-Law Distributions in Empirical Data , 2007, SIAM Rev..
[13] Jan Dhaene,et al. Comonotonic approximations for a generalized provisioning problem with application to optimal portfolio selection , 2011, J. Comput. Appl. Math..
[14] J. L. Nolan,et al. Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .
[15] E. Fama. The Behavior of Stock-Market Prices , 1965 .
[16] E. Fama. Portfolio Analysis in a Stable Paretian Market , 1965 .
[17] Stefan Mittnik,et al. Computing the probability density function of the stable Paretian distribution , 1999 .
[18] B. Mandelbrot. The Variation of Some Other Speculative Prices , 1967 .
[19] Svetlozar T. Rachev,et al. Orderings and Risk Probability Functionals in Portfolio Theory , 2008 .
[20] Svetlozar T. Rachev,et al. Approximation of skewed and leptokurtic return distributions , 2012 .
[21] J. Shanthikumar,et al. Multivariate Stochastic Orders , 2007 .
[22] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[23] T. Lando,et al. Statistical functionals consistent with a weak relative majorization ordering: applications to the mimimum divergence estimation , 2014 .
[24] Barry C. Arnold,et al. Skewness and kurtosis orderings: an introduction , 1992 .
[25] H. Levy,et al. The Efficiency Analysis of Choices Involving Risk1 , 1975 .
[26] Howard M. Taylor,et al. On the Distribution of Stock Price Differences , 1967, Oper. Res..
[27] K. Chung,et al. Limit Distributions for Sums of Independent Random Variables. , 1955 .
[28] 竹中 茂夫. G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .
[29] Quang Huy Nguyen,et al. New efficient estimators in rare event simulation with heavy tails , 2014, J. Comput. Appl. Math..
[30] B. Mandelbrot. New Methods in Statistical Economics , 1963, Journal of Political Economy.
[31] B. Mandelbrot. The Variation of Certain Speculative Prices , 1963 .
[32] Gennady Samorodnitsky,et al. Computing the Portfolio Conditional Value-at-Risk in the Alpha-Stable Case , 2005 .
[33] R. H. Rimmer,et al. Stable Distributions in Mathematica , 2005 .
[34] Jean-Marie Dufour,et al. Editors’ introduction: Heavy tails and stable Paretian distributions in econometrics , 2014 .
[35] V. Zolotarev. One-dimensional stable distributions , 1986 .
[36] S. Rachev,et al. The Methods of Distances in the Theory of Probability and Statistics , 2013 .
[37] Eckhard Platen,et al. Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices , 2007 .