Correlation-based algorithm for multi-dimensional single-tone frequency estimation

In this paper, parameter estimation for a R-dimensional (R-D) single cisoid with R>=2 in additive white Gaussian noise is addressed. By exploiting the correlation of the data samples, we construct R single-tone sequences which contain the R-D frequency parameters. Based on linear prediction and weighted linear squares techniques, two proposals are developed for fast and accurate frequency estimation from each constructed sequence. The two devised estimators are proved to be asymptotically unbiased while their variances achieve Cramer-Rao lower bound when the signal-to-noise ratio and/or data length tend to infinity. Computer simulations are also included to compare the proposed approach with conventional R-D harmonic retrieval schemes in terms of mean square error performance and computational complexity.

[1]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[2]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[3]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[4]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[5]  Nikos D. Sidiropoulos,et al.  On 3D harmonic retrieval for wireless channel sounding , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[7]  K. J. Liu,et al.  A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.

[8]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[9]  R. Boyer Decoupled root-MUSIC algorithm for Multidimensional Harmonic retrieval , 2008, 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications.

[10]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[11]  Frankie K. W. Chan,et al.  Approximate Maximum-Likelihood Algorithms for Two-Dimensional Frequency Estimation of a Complex Sinusoid , 2006, IEEE Transactions on Signal Processing.

[12]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[13]  K.Venkatesh Prasad,et al.  Fundamentals of statistical signal processing: Estimation theory: by Steven M. KAY; Prentice Hall signal processing series; Prentice Hall; Englewood Cliffs, NJ, USA; 1993; xii + 595 pp.; $65; ISBN: 0-13-345711-7 , 1994 .

[14]  Rémy Boyer Deterministic asymptotic Cramér-Rao bound for the multidimensional harmonic model , 2008, Signal Process..

[15]  Frankie K. W. Chan,et al.  A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.

[16]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[17]  Frankie K. W. Chan,et al.  Structured total least squares approach for efficient frequency estimation , 2011, Signal Process..

[18]  Christoph F. Mecklenbräuker,et al.  Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models , 2004, EURASIP J. Adv. Signal Process..

[19]  Hing-Cheung So,et al.  Linear prediction approach to oversampling parameter estimation for multiple complex sinusoids , 2012, Signal Process..

[20]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[21]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[22]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[23]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[24]  Hing-Cheung So,et al.  Two-stage autocorrelation approach for accurate single sinusoidal frequency estimation , 2008, Signal Process..