A Robust Clustering Method for Missing Metadata in Image Search Results

Although metadata are useful to obtain better clustering results on image clustering, some images do not have social tags or metadata about photo-taking conditions. In this paper, we propose an image clustering method that is robust for those missing metadata of photo images that appear in search results on the Web. The method has an integrated estimation mechanism for missing social tags or photo-taking conditions from other images in the image search result. An advantage of our method is that our approach does not require another training set that is constructed from other images that are not included in the search result. We demonstrate that the proposed method can effectively cluster images which have some missing metadata by showing the performance of on-demand clustering on a photo sharing site.

[1]  Jiebo Luo,et al.  Bayesian fusion of camera metadata cues in semantic scene classification , 2004, CVPR 2004.

[2]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[3]  Hiroshi Ishikawa,et al.  Constraint-Based Clustering of Image Search Results Using Photo Metadata and Low-Level Image Features , 2010, Computer and Information Science.

[4]  Ji-Rong Wen,et al.  Multi-dimensional search result diversification , 2011, WSDM '11.

[5]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[6]  Martin Halvey,et al.  Application and evaluation of multi-dimensional diversity , 2009 .

[7]  Ramesh C. Jain,et al.  Classification and annotation of digital photos using optical context data , 2008, CIVR '08.

[8]  W. Bruce Croft,et al.  Analysis of long queries in a large scale search log , 2009, WSCD '09.

[9]  Roelof van Zwol,et al.  Diversifying image search with user generated content , 2008, MIR '08.

[10]  Wolfgang Nejdl,et al.  Increasing Diversity in Web Search Results , 2010 .

[11]  S. S. Ravi,et al.  Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results , 2005, PKDD.

[12]  Paul Clough,et al.  Creating a test collection to evaluate diversity in image retrieval , 2008, SIGIR 2008.

[13]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[14]  Guillaume Pitel,et al.  Image clustering based on a shared nearest neighbors approach for tagged collections , 2008, CIVR '08.

[15]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[16]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[17]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[18]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[21]  Zi Huang,et al.  Mining multi-tag association for image tagging , 2011, World Wide Web.

[22]  Alan Hanjalic,et al.  Supervised reranking for web image search , 2010, ACM Multimedia.

[23]  Kai Song,et al.  Diversifying the image retrieval results , 2006, MM '06.

[24]  Roelof van Zwol,et al.  Faceted exploration of image search results , 2010, WWW '10.

[25]  Zeng Chen,et al.  Web Image Search by Automatic Image Annotation and Translation , 2010 .

[26]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[27]  Wesley De Neve,et al.  Tag refinement in an image folksonomy using visual similarity and tag co-occurrence statistics , 2010, Signal Process. Image Commun..

[28]  Shuicheng Yan,et al.  Image tag refinement towards low-rank, content-tag prior and error sparsity , 2010, ACM Multimedia.

[29]  Alexei A. Efros,et al.  IM2GPS: estimating geographic information from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.