Evidence of Negative Capacitance and Capacitance Modulation by Light and Mechanical Stimuli in Pt/ZnO/Pt Schottky Junctions

We report on the evidence of negative capacitance values in a system consisting of metal-semiconductor-metal (MSM) structures, with Schottky junctions made of zinc oxide thin films deposited by Atomic Layer Deposition (ALD) on top of platinum interdigitated electrodes (IDE). The MSM structures were studied over a wide frequency range, between 20 Hz and 1 MHz. Light and mechanical strain applied to the device modulate positive or negative capacitance and conductance characteristics by tuning the flow of electrons involved in the conduction mechanisms. A complete study was carried out by measuring the capacitance and conductance characteristics under the influence of both dark and light conditions, over an extended range of applied bias voltage and frequency. An impact-loss process linked to the injection of hot electrons at the interface trap states of the metal-semiconductor junction is proposed to be at the origin of the apparition of the negative capacitance values. These negative values are preceded by a local increase of the capacitance associated with the accumulation of trapped electrons at the interface trap states. Thus, we propose a simple device where the capacitance values can be modulated over a wide frequency range via the action of light and strain, while using cleanroom-compatible materials for fabrication. These results open up new perspectives and applications for the miniaturization of highly sensitive and low power consumption environmental sensors, as well as for broadband impedance matching in radio frequency applications.

[1]  A M , ETHOD OF MEASURING THE RESISTIVITY AND HALL ' COEFFICIENT ON LAMELLAE OF ARBITRARY SHAPE , 2014 .

[2]  O. O. Tade,et al.  Negative impedance converters for broadband antenna matching , 2012, 2012 42nd European Microwave Conference.

[3]  J. Shieh,et al.  Negative capacitance from the inductance of ferroelectric switching , 2019, Communications Physics.

[4]  Tung,et al.  Origin of the excess capacitance at intimate Schottky contacts. , 1988, Physical review letters.

[5]  Z. Mei,et al.  Oxygen vacancies: The origin of n -type conductivity in ZnO , 2016, 1603.02831.

[6]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[7]  J. Íñiguez,et al.  Ferroelectric negative capacitance , 2019, Nature Reviews Materials.

[8]  Hua Zhou,et al.  A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors , 2019, Journal of Materials Science.

[9]  Q. Lv,et al.  Coexistence of Memristive Behaviors and Negative Capacitance Effects in Single-Crystal $\hbox{TiO}_{2}$ Thin-Film-Based Devices , 2012, IEEE Electron Device Letters.

[10]  B. Jones,et al.  Negative capacitance effects in semiconductor diodes , 1998 .

[11]  M. Henini,et al.  Effect of nitrogen incorporation on electrical properties of Ti/Au/GaAsN Schottky diodes , 2014 .

[12]  John Bardeen,et al.  Surface States and Rectification at a Metal Semi-Conductor Contact , 1947 .

[13]  Sayeef Salahuddin,et al.  Negative Capacitance Transistors , 2018, Proceedings of the IEEE.

[14]  Jung-Hoon Song,et al.  Light-induced capacitance enhancement and successive carrier escape in InGaN/GaN multiple quantum wells , 2020 .

[15]  Zhong‐Lin Wang,et al.  Fundamental Theory of Piezotronics , 2011, Advanced materials.

[16]  Yicheng Lu,et al.  ZnO Schottky barriers and Ohmic contacts , 2011 .

[17]  M. Guennou,et al.  Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gas , 2020, Results in Materials.

[18]  P. Dianat Unconventional photo capacitor with giant light induced capacitance enhancement , 2016 .

[19]  S. Girod,et al.  Polymeric cantilevered piezotronic strain microsensors processed by Atomic Layer Deposition , 2020 .

[20]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[21]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[22]  A. Turut,et al.  The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range , 2013 .

[23]  A. T. Pham,et al.  Frequency dependence of negative capacitance in light-emitting devices , 2012, 2012 Fourth International Conference on Communications and Electronics (ICCE).

[24]  A. Jonscher The physical origin of negative capacitance , 1986 .

[25]  H. Chang,et al.  Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures , 2009 .

[26]  G. Eisenstein,et al.  Negative capacitance in optically sensitive metal-insulator-semiconductor-metal structures , 2016 .

[27]  Changhwan Shin,et al.  Amorphous Indium Zinc Oxide Thin-Film Transistor with Steep Subthreshold Slope by Negative Capacitance , 2016, IEICE Trans. Electron..

[28]  P. Gonon,et al.  Observation of negative capacitances in metal-insulator-metal devices based on a-BaTiO3:H , 2008 .

[29]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[30]  Christopher T. Nelson,et al.  Spatially resolved steady-state negative capacitance , 2019, Nature.

[31]  P. Zhou,et al.  Ultrasensitive negative capacitance phototransistors , 2020, Nature Communications.

[32]  Onur Tigli,et al.  Zinc oxide nanostructures: from growth to application , 2013, Journal of Materials Science.

[33]  Edward S. Yang,et al.  Negative capacitance at metal-semiconductor interfaces , 1990 .

[34]  A. Chiolerio,et al.  Evidence of Negative Capacitance in Piezoelectric ZnO Thin Films Sputtered on Interdigital Electrodes. , 2015, ACS applied materials & interfaces.

[35]  Minshen Zhu,et al.  Capacitance Enhancement in a Semiconductor Nanostructure‐Based Supercapacitor by Solar Light and a Self‐Powered Supercapacitor–Photodetector System , 2016 .

[36]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[37]  S. M. Sze,et al.  Current transport in metal-semiconductor-metal (MSM) structures , 1971 .

[38]  Alessandro Chiolerio,et al.  Zinc Oxide Thin Films for Memristive Devices: A Review , 2017 .

[39]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[40]  M. Buchanan,et al.  Negative capacitance effect in semiconductor devices , 1998 .

[41]  R. Roy,et al.  Negative capacitance in ZnO1-xChx (Ch = S, Se, Te): Role of localized charge recombination , 2017 .

[42]  A. Bezinger,et al.  Negative capacitance in GaN/AlGaN heterojunction dual-band detectors , 2009 .

[43]  Amit Kumar,et al.  Negative capacitance induced by redistribution of oxygen vacancies in the fatigued BiFeO3-based thin film , 2012 .

[44]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[45]  A. Persano,et al.  A highly tunable heterostructure metal-semiconductor-metal capacitor utilizing embedded 2-dimensional charge , 2012 .

[46]  A. Gümüş,et al.  The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs) , 2015 .

[47]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[48]  F. Gul,et al.  ZnO and ZnO1−x based thin film memristors: The effects of oxygen deficiency and thickness in resistive switching behavior , 2017, 1704.06574.

[49]  K. Asokan,et al.  Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode , 2016 .

[50]  S. M. Durbin,et al.  Influence of oxygen vacancies on Schottky contacts to ZnO , 2008 .