Thermal stability and corrosion resistance of the magnetic anisotropy in ultrathin nanopatterned films

We addressed the thermal stability and corrosion resistance of the magnetic anisotropy of surface-step atoms in nanopatterned ultrathin Fe/Ag(001) films. The step-induced anisotropy was remarkably stable, in ultrahigh vacuum, for flashing temperature up to 520 K, but showed no resistance to atmospheric oxidation. Capping the nanopatterned films with ultrathin chromium overlayers allowed to preserve the magnetic anisotropy due to step atoms while extending its thermal stability to above 670 K and greatly enhancing its resistance under oxidizing atmospheric environment.

[1]  Francesco Bisio,et al.  Kink contribution to the magnetic anisotropy of nanostructured ultrathin Co/ Cu(001) and Fe/Ag(001) films , 2007 .

[2]  L. Mattera,et al.  Correlation of site-selective oxygen adsorption with step-induced magnetic anisotropy in nanopatterned Fe films , 2007 .

[3]  M. Canepa,et al.  Magnetocrystalline anisotropy of monatomic steps in Fe ∕ Ag ( 001 ) nanopatterned films , 2007 .

[4]  E. Carter,et al.  Structure, magnetism, and adhesion at Cr/Fe interfaces from density functional theory , 2007 .

[5]  M. Canepa,et al.  Isolating the step contribution to the uniaxial magnetic anisotropy in nanostructured Fe/Ag(001) films. , 2006, Physical review letters.

[6]  S. Airaksinen,et al.  An XPS study of CrOx on a thin alumina film and in alumina supported catalysts , 2005 .

[7]  M. Canepa,et al.  Correlation between magnetism and structure in ultrathinFe∕Cu3Au(001)films , 2005 .

[8]  T. Cren,et al.  Oxidation Induced Enhanced Magnetic Susceptibility of Co Islands on Pt(111) , 2004 .

[9]  D. Sekiba,et al.  Uniaxial magnetic anisotropy tuned by nanoscale ripple formation: Ion-sculpting of Co/Cu(001) thin films , 2004 .

[10]  Italy.,et al.  Surfactant effect and dissolution of ultrathin Fe films on Ag(001) , 2004, cond-mat/0401142.

[11]  T. Cren,et al.  The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures , 2003, Nature materials.

[12]  J. L. Erskine,et al.  Effects of step decoration by oxygen on ultrathin film magnetic anisotropy; p(1×1)Fe on vicinal W(100) , 2003 .

[13]  F. Mongeot,et al.  Nanostructuring surfaces by ion sputtering , 2002 .

[14]  Z. Qiu,et al.  Magnetic uniaxial anisotropy of Fe films grown on vicinal Ag(001) , 2002 .

[15]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[16]  F. Habraken,et al.  The oxidation state of Fe(100) after initial oxidation in O2 , 1999 .

[17]  M. Canepa,et al.  Temperature effects on morphology and composition of ultrathin heteroepitaxial films: Fe on Ag(100) , 1999 .

[18]  Jhinhwan Lee,et al.  SURFACE ALLOY FORMATION OF FE ON CR(100) STUDIED BY SCANNING TUNNELING MICROSCOPY , 1999 .

[19]  R. Kawakami,et al.  90° Magnetization Switching in Thin Fe Films Grown on Stepped Cr(001) , 1998 .

[20]  R. White,et al.  Second-order magneto-optic effects in anisotropic thin films. , 1998 .

[21]  R. Allenspach,et al.  DETERMINING MAGNETIC ANISOTROPIES FROM HYSTERESIS LOOPS , 1997 .

[22]  R. Cowburn,et al.  Magnetic switching and in‐plane uniaxial anisotropy in ultrathin Ag/Fe/Ag(100) epitaxial films , 1995 .

[23]  Weber,et al.  Submonolayers of adsorbates on stepped Co/Cu(100): Switching of the easy axis. , 1995, Physical review. B, Condensed matter.

[24]  C. Back,et al.  Magnetic switching in cobalt films by adsorption of copper , 1995, Nature.

[25]  Kirschner,et al.  Fast interdiffusion in thin films: Scanning-tunneling-microscopy determination of surface diffusion through microscopic pinholes. , 1993, Physical review. B, Condensed matter.

[26]  Chen,et al.  Chemisorption-induced change in thin-film spin anisotropy: Oxygen adsorption on the p(1 x 1)Fe/Ag(100) system. , 1992, Physical review. B, Condensed matter.

[27]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .

[28]  Purcell,et al.  Ferromagnetic-resonance study of ultrathin bcc Fe(100) films grown epitaxially on fcc Ag(100) substrates. , 1987, Physical review letters.

[29]  A. Atkinson Transport processes during the growth of oxide films at elevated temperature , 1985 .