An adhesive contact mechanics formulation based on atomistically induced surface traction
暂无分享,去创建一个
Bo Ren | Shaofan Li | Houfu Fan | Shaofan Li | B. Ren | Houfu Fan
[1] Ronald E. Miller,et al. Atomistic simulation of nanoindentation into copper multilayers , 2005 .
[2] YP Zhao,et al. Effect of Work of Adhesion on Nanoindentation , 2003 .
[3] P. Wriggers. Computational contact mechanics , 2012 .
[4] H. Saunders. Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .
[5] Roger A. Sauer,et al. An atomic interaction-based continuum model for adhesive contact mechanics , 2007 .
[6] Shaofan Li,et al. On multiscale moving contact line theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[7] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[8] Roger A. Sauer,et al. A contact mechanics model for quasi‐continua , 2007 .
[9] William A. Goddard,et al. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .
[10] Tamar Schlick,et al. Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .
[11] Mark A. Lantz,et al. Simultaneous force and conduction measurements in atomic force microscopy , 1997 .
[12] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[13] Steven D. Kenny,et al. Atomistic simulations of structural transformations of silicon surfaces under nanoindentation , 2004 .
[14] Shaofan Li,et al. Modeling microtubule cytoskeleton via an active liquid crystal elastomer model , 2015 .
[15] Phaedon Avouris,et al. Deformation of carbon nanotubes by surface van der Waals forces , 1998 .
[16] G. Dietler,et al. Force-distance curves by atomic force microscopy , 1999 .
[17] Kathrin Abendroth,et al. Nonlinear Finite Elements For Continua And Structures , 2016 .
[18] J. Huetink,et al. A geometrical-based contact algorithm using a barrier method , 2001 .
[19] T. Laursen. Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .
[20] B. V. Derjaguin,et al. Effect of contact deformations on the adhesion of particles , 1975 .
[21] Anand Jagota,et al. Surface formulation for molecular interactions of macroscopic bodies , 1997 .
[22] K. Kendall,et al. Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[23] Tongxi Yu,et al. Mechanics of adhesion in MEMS—a review , 2003 .
[24] Gerhard A. Holzapfel,et al. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .
[25] Berend Smit,et al. Understanding Molecular Simulation , 2001 .
[26] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[27] A. Leach. Molecular Modelling: Principles and Applications , 1996 .
[28] Shaofan Li,et al. Multiscale modeling and simulation of dynamic wetting , 2014 .
[29] Sung-San Cho,et al. Finite element modeling of adhesive contact using molecular potential , 2004 .
[30] J. Israelachvili. Intermolecular and surface forces , 1985 .
[31] Gerber,et al. Atomic Force Microscope , 2020, Definitions.
[32] K. Bathe. Finite Element Procedures , 1995 .
[33] Jing Fang,et al. Influence of substrate stiffness on cell-substrate interfacial adhesion and spreading: a mechano-chemical coupling model. , 2011, Journal of colloid and interface science.
[34] Jagota,et al. An Intersurface Stress Tensor , 1997, Journal of colloid and interface science.