Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.

Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry.

[1]  D. F. Ogletree,et al.  Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography , 2010, Nanotechnology.

[2]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[3]  Hiromi Okamoto,et al.  Plasmon mode imaging of single gold nanorods. , 2004, Journal of the American Chemical Society.

[4]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[5]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[6]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[7]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[8]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[9]  D. Aspnes,et al.  Optical properties of Au: Sample effects , 1980 .

[10]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[11]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[12]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[13]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[14]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[15]  Christian Rewitz,et al.  Analytic coherent control of plasmon propagation in nanostructures. , 2009, Optics express.

[16]  Sven Laux,et al.  Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation , 1998 .

[17]  E. Fischbach,et al.  Experimental investigation of the Casimir force beyond the proximity-force approximation. , 2007, Physical review letters.

[18]  Bert Hecht,et al.  Impedance matching and emission properties of nanoantennas in an optical nanocircuit. , 2009, Nano letters.

[19]  Sourobh Raychaudhuri,et al.  Precise semiconductor nanowire placement through dielectrophoresis. , 2009, Nano letters.

[20]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[21]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[22]  T. Ebbesen,et al.  Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. , 2009, ACS nano.

[23]  Chad A Mirkin,et al.  Colloidal gold and silver triangular nanoprisms. , 2009, Small.

[24]  Ethan Schonbrun,et al.  Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. , 2009, Nano letters.

[25]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[26]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[27]  Antonio Marcus Nogueira Lima,et al.  Optical properties and instrumental performance of thin gold films near the surface plasmon resonance , 2006 .

[28]  H. Lezec,et al.  Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling , 2008, 0801.1267.

[29]  X. Jiao,et al.  Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers , 2009 .

[30]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[31]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[32]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[33]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[34]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[35]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[36]  F. Capasso,et al.  The forces from coupled surface plasmon polaritons in planar waveguides. , 2009, Optics express.

[37]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[38]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[39]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[40]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[41]  T. Grosges,et al.  Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors , 2008 .

[42]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[43]  Volker Deckert,et al.  Transparent silver microcrystals: synthesis and application for nanoscale analysis. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[44]  C. Lofton,et al.  Mechanisms Controlling Crystal Habits of Gold and Silver Colloids , 2005 .

[45]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[46]  Alfred Forchel,et al.  Mode imaging and selection in strongly coupled nanoantennas. , 2010, Nano letters.

[47]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[48]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[49]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[50]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[51]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[52]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[53]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[54]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[55]  H. Lezec,et al.  Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy , 2008 .

[56]  Fabrication of complex three-dimensional nanostructures using focused ion beam and nanomanipulation , 2010 .

[57]  B. Hecht,et al.  Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits , 2008, 0807.3676.

[58]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[59]  Ning Gu,et al.  Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution , 2006 .

[60]  D. Iannuzzi,et al.  Observation of the skin-depth effect on the Casimir force between metallic surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Giorgio Volpe,et al.  Controlling the optical near field of nanoantennas with spatial phase-shaped beams. , 2009, Nano letters.

[62]  Kuo-Ping Chen,et al.  Drude relaxation rate in grained gold nanoantennas. , 2010, Nano letters.