Performance of nonlinear visual units in ocular hypertension and glaucoma

Summary-!. Two psychophysical tests to assess retinal function in ocular hypertension and glaucoma are described. The basis for these tests is the frequency-doubled percept seen with rapid temporal modulation of the contrast of very low spatial frequencies. 2. The results of the second set of experiments show correlation (P < 0.01) with optic disc cupping. Without the inclusion of information about subjects' optic disc condition the second experimental procedure distinguishes the test group from normals (P < 0.01). 3. A model which considers optic disc condition in conjunction with the results of the main experimental method described leads to a separability of normals and a subgroup with moderate disc cupping at the P < 0.001 level. 4. The results reported here, taken together with the current data on retinal ganglion cell function, indicate that harnessing unique features of the frequency-doubled illusion may allow the design of a highly specific and sensitive test for the assessment of early glaucomatous damage.

[1]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. Green,et al.  Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. , 1982, Archives of ophthalmology.

[3]  S. Drance,et al.  Color vision and retinal nerve fiber layer in early glaucoma. , 1986, American journal of ophthalmology.

[4]  R. Hess,et al.  On the relationship between pattern and movement perception in strabismic amblyopia , 1978, Vision Research.

[5]  R. Shapley,et al.  Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells , 1990, Visual Neuroscience.

[6]  J. Keltner,et al.  Correlation of color vision deficits and observable changes in the optic disc in a population of ocular hypertensives. , 1984, Archives of ophthalmology.

[7]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[8]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[9]  R. Snelgar,et al.  Optic neuritis: variations in temporal modulation sensitivity with retinal eccentricity. , 1990, Brain : a journal of neurology.

[10]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[11]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[13]  A study of the value of the central and peripheral isoptres in assessing visual field progression in the presence of paracentral scotoma measurements. , 1987, The British journal of ophthalmology.

[14]  R. Hess,et al.  Detection of low spatial frequencies: A single filter or multiple filters? , 1988, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[15]  R. Hess,et al.  The effect of temporal frequency variation on threshold contrast sensitivity deficits in optic neuritis. , 1983, Journal of neurology, neurosurgery, and psychiatry.

[16]  G. J. G. Upton,et al.  An Introduction to Statistical Modelling , 1983 .

[17]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[18]  A Atkin,et al.  Abnormalities of central contrast sensitivity in glaucoma. , 1979, American journal of ophthalmology.

[19]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[20]  C. Blakemore,et al.  Organization and post‐natal development of the monkey's lateral geniculate nucleus. , 1986, The Journal of physiology.

[21]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[22]  C W Tyler,et al.  Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. , 1981, Investigative ophthalmology & visual science.

[23]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[24]  C. R. Michael,et al.  Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Crawford,et al.  The lateral geniculate nucleus in human anisometropic amblyopia. , 1983, Investigative ophthalmology & visual science.

[26]  M. Crawford,et al.  The lateral geniculate nucleus in human strabismic amblyopia. , 1992, Investigative ophthalmology & visual science.

[27]  D H Kelly,et al.  Nonlinear visual responses to flickering sinusoidal gratings. , 1981, Journal of the Optical Society of America.

[28]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[29]  S. Drance,et al.  Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope as predictors of glaucomatous field change. , 1981, Archives of ophthalmology.

[30]  M. Yahr,et al.  Temporal frequency-dependent vep changes in Parkinson's disease , 1986, Vision Research.

[31]  William H. Merigan,et al.  Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells , 1986, Vision Research.

[32]  A J Bron,et al.  Contrast sensitivity and visual disability in chronic simple glaucoma. , 1984, The British journal of ophthalmology.

[33]  D. H. Kelly Frequency Doubling in Visual Responses , 1966 .

[34]  R. Young,et al.  Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  A. Adams,et al.  Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients. , 1982, Investigative ophthalmology & visual science.

[36]  A. Adams,et al.  Central visual fields for short wavelength sensitive pathways in glaucoma and ocular hypertension. , 1988, Investigative ophthalmology & visual science.

[37]  J. Maunsell,et al.  Macaque vision after magnocellular lateral geniculate lesions , 1990, Visual Neuroscience.

[38]  I. Bodis-Wollner,et al.  Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP. , 1988, Experimental eye research.

[39]  M. C. Leske,et al.  The epidemiology of open-angle glaucoma: a review. , 1983, American journal of epidemiology.

[40]  G. Dunkelberger,et al.  Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. , 1989, Investigative ophthalmology & visual science.

[41]  W R Green,et al.  Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. , 1988, Ophthalmology.