Theory of ultramicroelectrodes

This review describes the theory of mass transport at ultramicroelectrodes that have broken through several experimental limitations of electrochemical measurements. On the basis of the mathematical miniaturization, the ultramicroelectrode can be classified into a point electrode, a line electrode, and a plane electrode. Electrochemical features of these electrodes are described from a viewpoint of the mass transport, especially due to diffusion. Theoretical difficulty in ultramicroelectrodes is mainly due to nonuniform current distribution on the electrode surface. The expression for the time-dependent diffusion-controlled current at any electrode geometry, which predicts the current responding to any potential variation, is presented. Conditions of the steady-state current are specified. The diffusional characteristic functions at a disk. a cylinder, and a band are presented, from which the theories of various electrochemical techniques can be derived analytically. Voltammetric peak currents at several ultramicroelectrodes are compared in light of the diffusional edge effect. The properties of the steady-state current are described at a disk, a band array, a ring, and a recess electrode. The theory is extended to the current-potential curves complicated by the heterogeneous kinetics at a disk, a cylinder, and a band-array electrode.

[1]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[2]  K. Tokuda,et al.  Theory of stationary current-voltage curves of redox-electrode reactions in hydrodynamic voltammetry: IX. Double electrodes in channel flow , 1974 .

[3]  R. Murray,et al.  Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use , 1985 .

[4]  Hiroaki Matsuda,et al.  Derivation of an approximate equation for chronoamperometric curves at microband electrodes and its experimental verification , 1987 .

[5]  M. Fleischmann,et al.  The behavior of microdisk and microring electrodes , 1989 .

[6]  K. Aoki Theory of the steady-state current of a redox couple at interdigitated array electrodes of which pairs are insulated electrically by steps , 1989 .

[7]  K. B. Oldham,et al.  Steady-state voltammetry at an inlaid microdisc: comparison of three approaches , 1991 .

[8]  K. Tokuda,et al.  Voltammetry at partially covered electrodes: Part II. Linear potential sweep and cyclic voltammetry , 1979 .

[9]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[10]  Koichi Aoki,et al.  Diffusion-controlled current at the stationary finite disk electrode: Theory , 1981 .

[11]  E. Gileadi,et al.  Ensembles of microelectrodes: A digital- simulation , 1982 .

[12]  L. Daruházi,et al.  Novel type moat (recessed band) microelectrode Description and theoretical optimization , 1991 .

[13]  A. Szabó,et al.  Chronoamperometry at an ensemble of microdisk electrodes , 1984 .

[14]  D. Bélanger,et al.  Microelectrochemical transistors based on electrostatic binding of electroactive metal complexes in protonated poly(4-vinylpyridine): devices that respond to two chemical stimuli , 1987 .

[15]  A. Bond,et al.  Voltammetry at linear gold and platinum microelectrode arrays produced by lithographic techniques , 1985 .

[16]  Mark W. Verbrugge,et al.  A transformation for the treatment of diffusion and migration. Application to stationary disk and hemisphere electrodes , 1991 .

[17]  K. B. Oldham The short-time chronoamperometric behaviour of an electrode of arbitrary shape , 1991 .

[18]  J. Flanagan,et al.  Digital simulation of edge effects at planar disk electrodes , 1973 .

[19]  K. Aoki,et al.  Voltammetry at microcylinder electrodes: Part IV. Normal and differential pulse voltammetry , 1986 .

[20]  H. Matsuda Zur Theorie der Elektrolyse mit Zwei Eng Benachbarten Elektroden in Strömungsanordnungen. Allgemeine Formel für die Übertragungsausbeute , 1968 .

[21]  A. Szabó Theory of the current at microelectrodes: application to ring electrodes , 1987 .

[22]  K. Aoki,et al.  Voltammetry at microcylinder electrodes: Part I. Linear sweep voltammetry , 1985 .

[23]  Yukio Saito,et al.  A Theoretical Study on the Diffusion Current at the Stationary Electrodes of Circular and Narrow Band Types , 1968 .

[24]  K. Aoki,et al.  Chronopotentiometry at very small stationary disk electrodes , 1985 .

[25]  K. B. Oldham Theory of microelectrode voltammetry with little electrolyte , 1988 .

[26]  K. Aoki,et al.  Reversible square-wave voltammograms independence of electrode geometry , 1986 .

[27]  Davis K. Cope,et al.  Chronoamperometric current at hemicylinder and band microelectrodes: Theory and experiment , 1987 .

[28]  K. Aoki,et al.  Voltammetry at microcylinder electrodes: Part II. Chronoamperometry , 1985 .

[29]  K. Aoki,et al.  Theory of stationary current-potential curves at microdisk electrodes for quasi-reversible and totally irreversible electrode reactions , 1987 .

[30]  K. Nozaki,et al.  Estimation of charge transfer kinetic parameters from irreversible cyclic voltammograms at carbon fiber electrodes , 1988 .

[31]  K. Aoki,et al.  Theory of linear sweep voltammetry with finite diffusion space , 1983 .

[32]  K. Aoki,et al.  Linear sweep voltammetry at very small stationary disk electrodes , 1984 .

[33]  Henry S. White,et al.  Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor , 1984 .

[34]  Keith B. Oldham,et al.  Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions , 1988 .

[35]  Davis K. Cope,et al.  Diffusion current at a band electrode by an integral equation method , 1986 .

[36]  L. Anderson,et al.  Filar electrodes: steady-state currents and spectroelectrochemistry at twin interdigitated electrodes , 1985 .

[37]  Hiroaki Matsuda,et al.  Theory of chronoamperometric curves at microband electrodes , 1987 .

[38]  R. Wightman,et al.  Electrochemical kinetics at microelectrodes: Part V. Migrational effects on steady or quasi-steady-state voltammograms , 1988 .

[39]  K. Tokuda,et al.  Voltammetry at partially covered electrodes: Part I. Chronopotentiometry and chronoamperometry at model electrodes , 1978 .

[40]  Hiroaki Matsuda,et al.  Theory of Chronoamperometric Curves for a Short Time at Microband Electrodes , 1986 .

[41]  A. Bond,et al.  Voltammetric measurements using microelectrodes in highly dilute solutions: Theoretical considerations , 1984 .

[42]  Koichi Aoki,et al.  Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions , 1988 .

[43]  O. Niwa,et al.  Fabrication and characteristics of vertically separated interdigitated array electrodes , 1989 .

[44]  D. Cope,et al.  Transient behavior at planar microelectrodes: Diffusion current at ring electrodes by the integral equation method , 1990 .

[45]  K. Aoki,et al.  Detection of a steady-state current diverging from a point source by means of a potentiostated microdisk electrode , 1989 .

[46]  K. Aoki,et al.  Square wave voltammetry at small disk electrodes: Theory and experiment , 1986 .

[47]  J. L. Anderson,et al.  Hydrodynamic voltammetry at an interdigitated electrode array in a flow channel , 1985 .

[48]  M. Fleischmann,et al.  The behavior of microdisk and microring electrodes: Application of Neumann's integral theorem to the prediction of the steady state response of microdisks , 1989 .

[49]  K. Tokuda,et al.  Voltammetry at partially covered electrodes: Part III. Faradaic impedance measurements at model electrodes , 1979 .

[50]  R. Landsberg,et al.  Über den einfluss inaktiver oberflächenbereiche auf den diffusionsgrenzstrom an rotierenden scheibenelektroden und die transitionszeit bei galvanostatischen messungen , 1966 .

[51]  Jürgen Heinze,et al.  Diffusion processes at finite (micro) disk electrodes solved by digital simulation , 1981 .

[52]  K. B. Oldham,et al.  A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes , 1988 .

[53]  Koichi Aoki,et al.  Theory of stationary current—potential curves at interdigitated microarray electrodes for quasi‐reversible and totally irreversible electrode reactions , 1990 .

[54]  Keith B. Oldham,et al.  Edge effects in semiinfinite diffusion , 1981 .

[55]  K. Aoki,et al.  Theory of linear sweep voltammetry with finite diffusion space: Part II. Totally irreversible and quasi-reversible cases , 1984 .

[56]  K. Aoki,et al.  Theory of irreversible cyclic voltammograms at microcylinder electrodes , 1988 .

[57]  Davis K. Cope,et al.  Transient behavior at planar microelectrodesDiffusion current at a band electrode by an integral equation method. Part II , 1990 .

[58]  Koichi Aoki,et al.  Formulation of the diffusion-controlled current at very small stationary disk electrodes , 1984 .

[59]  K. Aoki,et al.  Voltammetry at microcylinder electrodes: Part VI. Second-order catalytic reaction of Fe(edta) with H2O2 , 1988 .

[60]  M. Kakihana,et al.  Diffusion current at microdisk electrodes—application to accurate measurement of diffusion coefficients , 1981 .

[61]  K. Aoki,et al.  Linear sweep voltammetry at microband electrodes , 1987 .

[62]  K. Aoki,et al.  Hydrodynamic voltammetry at channel electrodes: Part IX. Edge effects at rectangular channel flow microelectrodes , 1987 .

[63]  James E. Stewart,et al.  Refractive index gradients in stopped-flow and temperature-jump kinetics and liquid chromatography , 1981 .

[64]  A. Szabó,et al.  Chronoamperometric current at finite disk electrodes , 1982 .

[65]  I. Uchida,et al.  Evaluation of Kinetic Parameters from Steady-State Voltammograms at Ultramicrodisk Electrodes , 1988 .