Tuning of structural color using a dielectric actuator and multifunctional compliant electrodes.

We have developed electrically conducting silicone elastomer nanocomposites that serve both as compliant electrodes in an electrostatic actuator and, at the same time, as optically active elements creating structural color. We demonstrate the capabilities of our setup by actuating an elastomeric diffraction grating and colloidal-crystal-based photonic structures.

[1]  Edwin L. Thomas,et al.  Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels , 2009 .

[2]  Guangzhao Zhang,et al.  Electrically tunable block copolymer photonic crystals with a full color display , 2009 .

[3]  Glenn S. Smith,et al.  Detailed electromagnetic simulation for the structural color of butterfly wings. , 2009, Applied optics.

[4]  Kazuhide Ueno,et al.  Electrochromism based on structural colour changes in a polyelectrolyte gel , 2009 .

[5]  Yukikazu Takeoka,et al.  Dual Tuning of the Photonic Band‐Gap Structure in Soft Photonic Crystals , 2009 .

[6]  T. Szkopek,et al.  Counting graphene layers on glass via optical reflection microscopy , 2009 .

[7]  Yongjin Wang,et al.  Pitch-variable blazed grating consisting of freestanding silicon beams. , 2009, Optics express.

[8]  Andreas Stemmer,et al.  Variable phase retarder made of a dielectric elastomer actuator. , 2009, Optics letters.

[9]  G. Ozin,et al.  Electroactive inverse opal: a single material for all colors. , 2009, Angewandte Chemie.

[10]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[11]  Kai Song,et al.  Ternary inverse opal system for convenient and reversible photonic bandgap tuning. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[12]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[13]  Lei Jiang,et al.  Electrically Tunable Polypyrrole Inverse Opals with Switchable Stopband, Conductivity, and Wettability , 2008 .

[14]  Eugenia Kumacheva,et al.  Nanostructured polymers for photonics , 2008 .

[15]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[16]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[17]  A. Stemmer,et al.  Diffractive Transmission Grating Tuned by Dielectric Elastomer Actuator , 2007, IEEE Photonics Technology Letters.

[18]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[19]  Andreas Stemmer,et al.  Polymeric, electrically tunable diffraction grating based on artificial muscles. , 2006, Optics letters.

[20]  O. Solgaard,et al.  Tunable blazed gratings , 2006, Journal of Microelectromechanical Systems.

[21]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[22]  Stephen H. Foulger,et al.  Dynamic Tuning of Organic Lasers with Colloidal Crystals , 2006 .

[23]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  Stephen H. Foulger,et al.  Electric‐Field‐Induced Rejection‐Wavelength Tuning of Photonic‐Bandgap Composites , 2005 .

[25]  John Ballato,et al.  Multicolor Pattern Generation in Photonic Bandgap Composites , 2005 .

[26]  D. Hecht,et al.  Elastomer-based diffractive optical modulator , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  D. De Rossi,et al.  Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads , 2003 .

[28]  Younan Xia,et al.  Colloidal Crystals with Tunable Colors and Their Use as Photonic Papers , 2003 .

[29]  Kazunori Kataoka,et al.  Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. , 2003, Angewandte Chemie.

[30]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[31]  John Ballato,et al.  Photonic Crystal Composites with Reversible High‐Frequency Stop Band Shifts , 2003 .

[32]  George Barbastathis,et al.  Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators. , 2003, Applied optics.

[33]  Tetsuo Tsutsui,et al.  Tuning the Optical Properties of Inverse Opal Photonic Crystals by Deformation , 2002 .

[34]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[35]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[36]  Heydt,et al.  Acoustical performance of an electrostrictive polymer film loudspeaker , 2000, The Journal of the Acoustical Society of America.

[37]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[38]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[39]  O. Solgaard,et al.  Deformable grating optical modulator. , 1992, Optics letters.

[40]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[41]  Yukikazu Takeoka,et al.  Structural colored gels for tunable soft photonic crystals. , 2009, Chemical record.

[42]  Cheng-Hsien Liu,et al.  A large-displacement thermal actuator designed for MEMS pitch-tunable grating , 2008 .

[43]  Shuichi Kinoshita,et al.  Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.