Robust path tracking using flatness for fractional linear MIMO systems: A thermal application

This paper deals with robust path tracking using flatness principles extended to fractional linear MIMO systems. As soon as the path has been obtained by means of the fractional flatness, a robust path tracking based on CRONE control is presented. Flatness in path planning is used to determine the controls to apply without integrating any differential equations when the trajectory is fixed (in space and in time). Several developments have been made for fractional linear SISO systems using a transfer function approach. For fractional systems, especially in MIMO, developments are still to be made. Throughout this paper, flatness principles are applied using polynomial matrices for fractional linear MIMO systems. To illustrate the robustness performances, a third-generation multi-scalar CRONE controller is compared to a PID one.

[1]  Carl F. Lorenzo,et al.  Initialization in fractional order systems , 2001, 2001 European Control Conference (ECC).

[2]  Robert M. Darling,et al.  On the Short‐Time Behavior of Porous Intercalation Electrodes , 1997 .

[3]  A. Oustaloup,et al.  Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements , 2004 .

[4]  A. Oustaloup,et al.  La commande crone : du scalaire au multivariable , 1999 .

[5]  Alain Oustaloup,et al.  Flatness Control of a Fractional Thermal System , 2007 .

[6]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[7]  Jean Lévine,et al.  Flat output characterization for linear systems using polynomial matrices , 2003, Syst. Control. Lett..

[8]  D. Matignon Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .

[9]  A. Oustaloup La dérivation non entière , 1995 .

[10]  Patrick Lanusse,et al.  Robust control system design for multivariable plants with lightly damped modes , 2007 .

[11]  A. Oustaloup,et al.  Extension de la platitude aux systèmes fractionnaires {MIMO} : application à un système thermique , 2008 .

[12]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[13]  Michel Fliess,et al.  A flatness based control synthesis of linear systems and application to windshield wipers , 1997, 1997 European Control Conference (ECC).

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[16]  A. Oustaloup,et al.  Flatness principle extension to linear fractional MIMO systems: Thermal application , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[17]  A. Oustaloup,et al.  Fractional Differentiation in Passive Vibration Control , 2002 .

[18]  J. Battaglia,et al.  Solving an inverse heat conduction problem using a non-integer identified model , 2001 .

[19]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[20]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[21]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[22]  A. Oustaloup,et al.  Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).

[23]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[24]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[25]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[26]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .