Wavelet Steerability and the Higher-Order

Our main goal in this paper is to set the foundations of a general continuous-domain framework for designing steer- able, reversible signal transformations (a.k.a. frames) in multiple dimensions ( ). To that end, we introduce a self-reversible, th-order extension of the Riesz transform. We prove that this generalized transform has the following remarkable properties: shift-invariance, scale-invariance, inner-product preservation, and steerability. The pleasing consequence is that the transform maps any primary wavelet frame (or basis) of into another "steerable" wavelet frame, while preserving the frame bounds. The concept provides a functional counterpart to Simoncelli's steerable pyramid whose construction was primarily based on filterbank design. The proposed mechanism allows for the speci- fication of wavelets with any order of steerability in any number of dimensions; it also yields a perfect reconstruction filterbank algorithm. We illustrate the method with the design of a novel family of multidimensional Riesz-Laplace wavelets that essentially behave like the th-order partial derivatives of an isotropic Gaussian kernel.

[1]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[2]  Baltasar Beferull-Lozano,et al.  Directionlets: anisotropic multidirectional representation with separable filtering , 2006, IEEE Transactions on Image Processing.

[3]  Dimitri Van De Ville,et al.  Complex Wavelet Bases, Steerability, and the Marr-Like Pyramid , 2008, IEEE Transactions on Image Processing.

[4]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[5]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Gerald Sommer,et al.  A Lie group approach to steerable filters , 1995, Pattern Recognit. Lett..

[7]  Dimitri Van De Ville,et al.  The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via Subband Regression , 2008, IEEE Transactions on Image Processing.

[8]  K. Larkin Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  David J. Fleet,et al.  Robust online appearance models for visual tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[11]  Eero P. Simoncelli,et al.  A filter design technique for steerable pyramid image transforms , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[12]  A. Ron Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .

[13]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[14]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  Atilla Baskurt,et al.  Multidirectional curvilinear structures detection using steerable pyramid , 2004, J. Electronic Imaging.

[16]  Dimitri Van De Ville,et al.  Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes , 2009, IEEE Transactions on Image Processing.

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jeffrey Ng,et al.  A steerable complex wavelet construction and its application to image denoising , 2005, IEEE Transactions on Image Processing.

[20]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Pierre Vandergheynst,et al.  Directional dyadic wavelet transforms: design and algorithms , 2002, IEEE Trans. Image Process..

[22]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[23]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[24]  Sofia C. Olhede,et al.  Multiple Multidimensional Morse Wavelets , 2007, IEEE Transactions on Signal Processing.

[25]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[26]  Yacov Hel-Or,et al.  Lie generators for computing steerable functions , 1998, Pattern Recognit. Lett..

[27]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Yacov Hel-Or,et al.  Canonical Decomposition of Steerable Functions , 2004, Journal of Mathematical Imaging and Vision.

[29]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[30]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[31]  Dimitri Van De Ville,et al.  Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.

[32]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[33]  Marcel Riesz,et al.  Sur les fonctions conjuguées , 1928 .

[34]  Eero P. Simoncelli,et al.  Steerable wedge filters for local orientation analysis , 1996, IEEE Trans. Image Process..

[35]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[36]  Dimitri Van De Ville,et al.  An orthogonal family of quincunx wavelets with continuously adjustable order , 2005, IEEE Transactions on Image Processing.

[37]  A. Aldroubi Portraits of frames , 1995 .

[38]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[39]  Michael Felsberg,et al.  The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.

[40]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[41]  Belgium,et al.  Correspondence principle between spherical and euclidean wavelets , 2005, astro-ph/0502486.

[42]  Brigitte Forster-Heinlein,et al.  Steerable Wavelet Frames Based on the Riesz Transform , 2010, IEEE Transactions on Image Processing.

[43]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[44]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2006, IEEE Trans. Image Process..