Identification of Groundwater Parameter Structure Using Harmony Search Algorithm

Mathematical simulation models are widely used to predict the future response of groundwater systems for different flow and mass transport conditions. These models are based on the solution of governing partial differential equations which require some spatially distributed hydro-geological model parameters. However, these parameters are usually unknown due to the complexity of groundwater systems. Therefore, identification of them is an important task since they are the primary input of management models used in groundwater modeling. This chapter provides a brief review dealing with the solution of parameter structure identification problems based on the harmony search optimization algorithm. The results of this review indicate that the harmony search algorithm yields nearly same or better solutions than those of a genetic algorithm, which is another popular meta-heuristic optimization algorithm.

[1]  R. Willis,et al.  Groundwater Systems Planning and Management , 1987 .

[2]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[3]  J. Guan,et al.  Optimal remediation with well locations and pumping rates selected as continuous decision variables , 1999 .

[4]  M. Fesanghary,et al.  Combined heat and power economic dispatch by harmony search algorithm , 2007 .

[5]  Zong Woo Geem,et al.  Optimal Scheduling of Multiple Dam System Using Harmony Search Algorithm , 2007, IWANN.

[6]  M. Eppstein,et al.  SIMULTANEOUS ESTIMATION OF TRANSMISSIVITY VALUES AND ZONATION , 1996 .

[7]  Halim Ceylan,et al.  Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey , 2008 .

[8]  F. Tsai,et al.  A Combinatorial Optimization Scheme for Parameter Structure Identification in Ground Water Modeling , 2003, Ground water.

[9]  Zong Woo Geem,et al.  Harmony Search Algorithm for Solving Sudoku , 2007, KES.

[10]  Mustafa M. Aral,et al.  Identification of Contaminant Source Location and Release History in Aquifers , 2001 .

[11]  William W.-G. Yeh,et al.  A proposed stepwise regression method for model structure identification , 1998 .

[12]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[13]  William W.-G. Yeh,et al.  Aquifer parameter identification with optimum dimension in parameterization , 1981 .

[14]  D. McKinney,et al.  Genetic algorithm solution of groundwater management models , 1994 .

[15]  Zong Woo Geem,et al.  Application of Harmony Search to Vehicle Routing , 2005 .

[16]  Chung-Che Tan,et al.  An optimal procedure for identifying parameter structure and application to a confined aquifer , 2005 .

[17]  Yu-Pin Lin,et al.  Improving groundwater-flow modeling using optimal zoning methods , 2003 .

[18]  W. Yeh,et al.  Identification of Parameter Structure in Groundwater Inverse Problem , 1985 .

[19]  Mustafa M. Aral,et al.  Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm , 2007 .

[20]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[21]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[22]  Ching-Pin Tung,et al.  Pattern classification using tabu search to identify the spatial distribution of groundwater pumping , 2004 .

[23]  M. Tamer Ayvaz,et al.  Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm , 2007 .

[24]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[25]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .

[26]  Zong Woo Geem,et al.  Music Composition Using Harmony Search Algorithm , 2009, EvoWorkshops.

[27]  H. Karahan,et al.  A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates , 2008 .

[28]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[29]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[30]  Y. M. Cheng,et al.  An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis , 2008 .

[31]  Alberto Prieto,et al.  Computational and ambient intelligence , 2009, Neurocomputing.

[32]  N. Sun Inverse problems in groundwater modeling , 1994 .