The Two-Dimensional Liquid Crystal Droplet Problem with a Tangential Boundary Condition
暂无分享,去创建一个
[1] F. Lin,et al. The analysis of harmonic maps and their heat flows , 2008 .
[2] B. Chow. Elliptic and parabolic methods in geometry , 1996 .
[3] M. Calderer,et al. Axisymmetric configurations of bipolar liquid crystal droplets , 2002 .
[4] P. van der Schoot,et al. Parity breaking in nematic tactoids , 2004, cond-mat/0411015.
[5] F. Lin,et al. On nematic liquid crystal droplets , 1996 .
[6] E. Virga. Drops of nematic liquid crystals , 1989 .
[7] R. Douglas. The Hardy Spaces , 1998 .
[8] M. Yoneya,et al. Physics of Liquid Crystals , 2014 .
[9] A. Kaznacheev,et al. The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals , 2003 .
[10] Harmonic measure on locally flat domains , 1997, math/0304334.
[11] Shape of domains in two-dimensional systems: Virtual singularities and a generalized Wulff construction. , 1994, Physical review letters.
[12] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[13] F. C. Frank,et al. I. Liquid crystals. On the theory of liquid crystals , 1958 .
[14] Young-Ki Kim,et al. Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.
[15] Peter W. Jones. Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .
[16] P. van der Schoot,et al. Shape and director-field transformation of tactoids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] N. Fusco,et al. The sharp quantitative isoperimetric inequality , 2008 .
[18] F. P. Gardiner,et al. Quasiconformal Teichmuller Theory , 1999 .
[19] V. Ryazanov. ON BOUNDARY CORRESPONDENCE UNDER QUASICONFORMAL MAPPINGS , 1996 .
[20] F. Lin,et al. Isotropic‐Nematic Phase Transition and Liquid Crystal Droplets , 2020, Communications on Pure and Applied Mathematics.
[21] K. S. Krishnamurthy,et al. Interfacial and morphological features of a twist-bend nematic drop. , 2016, Soft matter.
[22] J. Ericksen,et al. Equilibrium Theory of Liquid Crystals , 1976 .
[23] P. van der Schoot,et al. Texture and shape of two-dimensional domains of nematic liquid crystals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Roy Williams,et al. Two transitions in tangentially anchored nematic droplets , 1986 .
[25] J. Ericksen. Liquid crystals with variable degree of orientation , 1991 .
[26] Qinfeng Li. Geometric Measure Theory with Applications to Shape Optimization Problems , 2018 .
[27] G. Friedel,et al. Les états mésomorphes de la matière , 1922 .
[28] C. Kenig,et al. Hardy spaces, $A_\infty$, and singular integrals on chord-arc domains , 1982 .
[29] C. M. Care,et al. Shape of an isotropic droplet in a nematic liquid crystal: the role of surfactant. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] T. Atherton,et al. Shape minimisation problems in liquid crystals , 2016, 1605.01377.
[31] L. Ahlfors. Quasiconformal reflections , 1963 .
[32] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[33] T. O’Neil. Geometric Measure Theory , 2002 .
[34] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[35] C. Oseen,et al. The theory of liquid crystals , 1933 .
[36] Michael R. Novack,et al. A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants , 2018, Archive for Rational Mechanics and Analysis.
[37] Shawn W. Walker,et al. A coupled Ericksen/Allen-Cahn model for liquid crystal droplets , 2018, Comput. Math. Appl..