The Two-Dimensional Liquid Crystal Droplet Problem with a Tangential Boundary Condition

Abstract. This paper studies a shape optimization problem which reduces to a nonlocal free boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence of an optimal shape that has two cusps on the boundary. We also prove the boundary of the droplet is a chord-arc curve with its normal vector field in the VMO space. In fact, the boundary curves of such droplets belong to the so-called Weil-Petersson class. In addition, the asymptotic behavior of the optimal shape when the volume becomes extremely large or small is also studied.

[1]  F. Lin,et al.  The analysis of harmonic maps and their heat flows , 2008 .

[2]  B. Chow Elliptic and parabolic methods in geometry , 1996 .

[3]  M. Calderer,et al.  Axisymmetric configurations of bipolar liquid crystal droplets , 2002 .

[4]  P. van der Schoot,et al.  Parity breaking in nematic tactoids , 2004, cond-mat/0411015.

[5]  F. Lin,et al.  On nematic liquid crystal droplets , 1996 .

[6]  E. Virga Drops of nematic liquid crystals , 1989 .

[7]  R. Douglas The Hardy Spaces , 1998 .

[8]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[9]  A. Kaznacheev,et al.  The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals , 2003 .

[10]  Harmonic measure on locally flat domains , 1997, math/0304334.

[11]  Shape of domains in two-dimensional systems: Virtual singularities and a generalized Wulff construction. , 1994, Physical review letters.

[12]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[13]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[14]  Young-Ki Kim,et al.  Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[16]  P. van der Schoot,et al.  Shape and director-field transformation of tactoids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  N. Fusco,et al.  The sharp quantitative isoperimetric inequality , 2008 .

[18]  F. P. Gardiner,et al.  Quasiconformal Teichmuller Theory , 1999 .

[19]  V. Ryazanov ON BOUNDARY CORRESPONDENCE UNDER QUASICONFORMAL MAPPINGS , 1996 .

[20]  F. Lin,et al.  Isotropic‐Nematic Phase Transition and Liquid Crystal Droplets , 2020, Communications on Pure and Applied Mathematics.

[21]  K. S. Krishnamurthy,et al.  Interfacial and morphological features of a twist-bend nematic drop. , 2016, Soft matter.

[22]  J. Ericksen,et al.  Equilibrium Theory of Liquid Crystals , 1976 .

[23]  P. van der Schoot,et al.  Texture and shape of two-dimensional domains of nematic liquid crystals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Roy Williams,et al.  Two transitions in tangentially anchored nematic droplets , 1986 .

[25]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[26]  Qinfeng Li Geometric Measure Theory with Applications to Shape Optimization Problems , 2018 .

[27]  G. Friedel,et al.  Les états mésomorphes de la matière , 1922 .

[28]  C. Kenig,et al.  Hardy spaces, $A_\infty$, and singular integrals on chord-arc domains , 1982 .

[29]  C. M. Care,et al.  Shape of an isotropic droplet in a nematic liquid crystal: the role of surfactant. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  T. Atherton,et al.  Shape minimisation problems in liquid crystals , 2016, 1605.01377.

[31]  L. Ahlfors Quasiconformal reflections , 1963 .

[32]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[33]  T. O’Neil Geometric Measure Theory , 2002 .

[34]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[35]  C. Oseen,et al.  The theory of liquid crystals , 1933 .

[36]  Michael R. Novack,et al.  A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants , 2018, Archive for Rational Mechanics and Analysis.

[37]  Shawn W. Walker,et al.  A coupled Ericksen/Allen-Cahn model for liquid crystal droplets , 2018, Comput. Math. Appl..