Multiscale elastic-viscoplastic computational analysis

The objective of this work is to develop an efficient strategy for quasi-static problems with elastic-viscoplastic constitutive laws. Our approach is based on the multiscale LATIN method for domain decomposition, and particularly on the use of the Proper Generalized Decomposition (PGD) method, which allows a drastic decrease in computation costs. We present the method in its general form applicable to problems with constitutive laws expressed using internal variables; then we discuss the technical features which are necessary in order to deal with elastic-viscoplastic models. We illustrate the method in detail through a onedimensional example using a Chaboche-type elastic-viscoplastic constitutive law.

[1]  Pierre Ladevèze,et al.  A new approach in non‐linear mechanics: The large time increment method , 1990 .

[2]  R. E. Jones,et al.  Nonlinear finite elements , 1978 .

[3]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[4]  Frédéric Magoulès,et al.  Lagrangian formulation of domain decomposition methods: A unified theory , 2006 .

[5]  Christian Rey,et al.  Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.

[6]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[7]  O. C. Zienkiewicz,et al.  New Advances in Computational Structural Mechanics: Proceedings of the European Conference on New Advances in Computational Structural Mechanics, Giens, France, 2-5 April 1991 , 1992 .

[8]  F. Devries,et al.  Homogenization and damage for composite structures , 1989 .

[9]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[10]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[11]  C. Farhat,et al.  The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems , 2000 .

[12]  Pierre Gosselet,et al.  A domain decomposition method for quasi-incompressible formulations with discontinuous pressure field , 2002 .

[13]  P. Ladevèze,et al.  A multiscale computational approach for contact problems , 2002 .

[14]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[15]  Charbel Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numerical Linear Algebra with Applications.

[16]  J. Mandel Balancing domain decomposition , 1993 .

[17]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[18]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[19]  Pierre Ladevèze,et al.  A Non-incremental and Adaptive Computational Approach in Thermo-viscoplasticity , 1999 .

[20]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[21]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[22]  E. Sanchez-Palencia,et al.  Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .

[23]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[24]  Pierre Ladevèze,et al.  A nonincremental approach for large displacement problems , 1997 .

[25]  David Dureisseix,et al.  A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .

[26]  Pierre Ladevèze,et al.  On a mixed and multiscale domain decomposition method , 2007 .

[27]  Pierre Ladevèze,et al.  A scalable time–space multiscale domain decomposition method: adaptive time scale separation , 2010 .

[28]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[29]  Pierre Ladevèze,et al.  Proper Generalized Decomposition for Multiscale and Multiphysics Problems , 2010 .

[30]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[31]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[32]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[33]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[34]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[35]  Pierre Ladevèze,et al.  A new large time increment algorithm for anisotropic plasticity , 1991 .

[36]  Pierre-Alain Boucard,et al.  A suitable computational strategy for the parametric analysis of problems with multiple contact , 2003 .

[37]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[38]  Pierre Ladevèze,et al.  Modeling and simulation of damage in elastomer structures at high strains , 2002 .

[39]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[40]  P. Ladevèze,et al.  A large time increment approach for thermo-mechanical problems , 1999 .

[41]  P. Ladevèze,et al.  A large time increment approach for cyclic viscoplasticity , 1993 .