Finite-lattice extrapolations for Z3 and Zs models

A method is presented to accelerate the convergence of finite-lattice sequences to their bulk limit. The calculation of highly accurate estimates of the critical parameters of the bulk system is then possible. Applied to the Hamiltonian version of the Z3 model (three-state Potts model) in (1+1) dimensions, these techniques yield estimates for the exponents gamma =1.444+or-0.0001, nu =0.8333+or-0.0003 and alpha =0.33+or-0.01. For the Z5 model, the presence of a Kosterlitz-Thouless transition is confirmed.

[1]  H. Wyld,et al.  Finite-lattice Hamiltonian results for the phase structure of the Z ( q ) models and the q -state Potts models , 1981 .

[2]  M. Nightingale,et al.  Finite size scaling and critical point exponents of the potts model , 1980 .

[3]  C. Hamer,et al.  Weak-coupling series and the critical indices of Z p spin systems in two dimensions , 1980 .

[4]  H. Wyld,et al.  Finite-lattice approach to the O(2) and O(3) models in 1+1 dimensions and the (2+1)-dimensional Ising model , 1980 .

[5]  M. Schick,et al.  Magnetic exponents of the two-dimensional q-state Potts model , 1980 .

[6]  C. Hamer,et al.  Finite-size scaling in Hamiltonian field theory , 1980 .

[7]  J. Cardy General discrete planar models in two dimensions: Duality properties and phase diagrams , 1980 .

[8]  H. Wyld,et al.  New method for the Hamiltonian formulation for lattice spin systems , 1980 .

[9]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[10]  C. Hamer,et al.  Accurate results from Hamiltonian strong-coupling expansions of the Ising, planar,O(3), andO(4)spin systems , 1979 .

[11]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[12]  R. Stinchcombe,et al.  A renormalisation group approach to a quantum spin system , 1979 .

[13]  R. Barrera,et al.  Long-range order HF states in the deformable jellium model? , 1979 .

[14]  J. Shigemitsu,et al.  Phase structure of discrete Abelian spin and gauge systems , 1979 .

[15]  C. Hamer,et al.  Strong Coupling Expansions and Phase Diagrams for the O(2), O(3) and O(4) Heisenberg Spin Systems in Two-dimensions , 1979 .

[16]  L. Schwartz,et al.  A ONE-PARAMETER FAMILY OF SEQUENCE TRANSFORMATIONS* , 1979 .

[17]  F. Y. Wu Phase diagram of a five-state spin system , 1979 .

[18]  Masuo Suzuki Static and Dynamic Finite-Size Scaling Theory Based on the Renormalization Group Approach , 1977 .

[19]  M. Nightingale Non-universality for ising-like spin systems , 1977 .

[20]  S. Alexander Lattice gas transition of He on Grafoil. A continuous transition with cubic terms , 1975 .

[21]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[22]  G. A. Baker,et al.  Methods of Series Analysis. I. Comparison of Current Methods Used in the Theory of Critical Phenomena , 1973 .

[23]  C. Paige Computational variants of the Lanczos method for the eigenproblem , 1972 .

[24]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .

[25]  F. Wegner Corrections to scaling laws , 1972 .

[26]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[27]  P. Wynn,et al.  Upon systems of recursions which obtain among the quotients of the Padé table , 1966 .

[28]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[29]  C. Hamer,et al.  Finite-lattice methods in quantum Hamiltonian field theory. I. The Ising model , 1981 .

[30]  C. Hamer,et al.  Finite-lattice methods in quantum Hamiltonian field theory. I. O(2) and O(3) Heisenberg models , 1981 .