Recycling of carbon dioxide to methanol and derived products - closing the loop.

Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.

[1]  Meyer Steinberg,et al.  Greenhouse gas carbon dioxide mitigation: Science and technology , 1998 .

[2]  Meyer Steinberg,et al.  Fossil fuel decarbonization technology for mitigating global warming , 1998 .

[3]  L. Bromberg,et al.  Methanol as an Alternative Transportation Fuel in the U.S.: Options for Sustainable and/or Energy-Secure Transportation , 2010 .

[4]  Javier Bilbao,et al.  Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation , 2011 .

[5]  Geoff Holmes,et al.  Process design and costing of an air-contactor for air-capture , 2011 .

[6]  C. L. Gray,et al.  Moving America to methanol , 1985 .

[7]  Stuart Licht,et al.  Solar hydrogen generation : toward a renewable energy future , 2008 .

[8]  K. R. G. Hein,et al.  Coal/biomass co-gasification in a pressurised fluidised bed reactor , 1999 .

[9]  M. Saito,et al.  Activity and stability of Cu/ZnO/Al2O3 catalyst promoted with B2O3 for methanol synthesis , 2000 .

[10]  Jürgen Klankermayer,et al.  Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst , 2012 .

[11]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[12]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[13]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[14]  Christopher J. Kucharik,et al.  Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River , 2008, Proceedings of the National Academy of Sciences.

[15]  S. Barnett,et al.  Syngas Production By Coelectrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle , 2009 .

[16]  Christopher W. Jones,et al.  Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. , 2012, The journal of physical chemistry letters.

[17]  K. Matyjaszewski,et al.  Reversible CO2 capture with porous polymers using the humidity swing , 2013 .

[18]  Christopher W. Jones,et al.  Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. , 2011, Environmental science & technology.

[19]  E. Peduzzi,et al.  Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol , 2013 .

[20]  Song Wang,et al.  CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction , 2011 .

[21]  Piotr Olszewski,et al.  Catalytic activity of the M/(3ZnO·ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol , 2004 .

[22]  B. Nordén,et al.  Towards Artificial Photosynthesis of CO2‐Neutral Fuel: Homogenous Catalysis of CO2‐Selective Reduction to Methanol Initiated by Visible‐Light‐Driven Multi‐Electron Collector , 2012 .

[23]  Victor S Batista,et al.  Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). , 2013, The journal of physical chemistry letters.

[24]  Anil Verma,et al.  Effect of solid polymer electrolyte on electrochemical reduction of CO2 , 2012 .

[25]  S. Nakagawa,et al.  EFFECT OF PRESSURE ON THE ELECTROCHEMICAL REDUCTION OF CO2 ON GROUP VIII METAL ELECTRODES , 1991 .

[26]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[27]  Jhuma Sadhukhan,et al.  Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power , 2011 .

[28]  C. L. Archer,et al.  Evaluation of global wind power , 2005 .

[29]  Lin Zhao,et al.  Electrochemical reduction of CO2 in solid oxide electrolysis cells , 2010 .

[30]  Chunshan Song,et al.  Hydrogen and Syngas Production and Purification Technologies , 2010 .

[31]  Hui Li,et al.  The Electro-Reduction of Carbon Dioxide in a Continuous Reactor , 2005 .

[32]  Robert H. Borgwardt,et al.  Biomass reactivity in gasification by the Hynol process. Report for November 94-May 1995 , 1995 .

[33]  Rakesh Agrawal,et al.  Sustainable fuel for the transportation sector , 2007, Proceedings of the National Academy of Sciences.

[34]  R. Borup,et al.  Dimethyl ether (DME) as an alternative fuel , 2006 .

[35]  R. Rowell,et al.  Methanol from wood waste: a technical and economic study. Forest Service general technical report , 1977 .

[36]  Masahiro Saito,et al.  Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction , 2004 .

[37]  Howard J. Herzog,et al.  Feasibility of air capture , 2011 .

[38]  Hao Ming Chen,et al.  Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol , 2011 .

[39]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[40]  E. Fujita,et al.  Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides , 2010 .

[41]  K. Fujimoto,et al.  Selective methanol synthesis from CO2/H2 on new SiO2-supported PtW and PtCr bimetallic catalysts , 1995 .

[42]  M. Ściążko,et al.  Co-gasification of biomass and coal for methanol synthesis , 2003 .

[43]  Y. Himeda Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine , 2009 .

[44]  A. Wokaun,et al.  Effect of the addition of chromium- and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide , 1997 .

[45]  Hironori Arakawa,et al.  CO2 hydrogenation over carbide catalysts , 1992 .

[46]  Vernon P. Roan,et al.  An Investigation of the Feasibility of Coal -Based Methanol for Application in Transportation Fuel Cell Systems , 2005 .

[47]  K. Lackner,et al.  Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. , 2013, Physical chemistry chemical physics : PCCP.

[48]  Xiaogang Zhang,et al.  Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode , 2005 .

[49]  Laurent Maron,et al.  A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. , 2013, Journal of the American Chemical Society.

[50]  A. Mitsos,et al.  Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis , 2009 .

[51]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[52]  Michael Obersteiner,et al.  Optimal location of wood gasification plants for methanol production with heat recovery , 2008 .

[53]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[54]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[55]  Douglas W Stephan,et al.  Frustrated Lewis pair inspired carbon dioxide reduction by a ruthenium tris(aminophosphine) complex. , 2012, Angewandte Chemie.

[56]  Jan D. Miller,et al.  Synthesis of DME from CO2/H2 gas mixture , 2011 .

[57]  V. Smil General Energetics: Energy in the Biosphere and Civilization , 1991 .

[58]  Lishan Jia,et al.  Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst , 2009 .

[59]  Y. Hori,et al.  Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes , 2002 .

[60]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[61]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[62]  K. Hara,et al.  Electrochemical Reduction of CO 2 on a Cu Electrode under High Pressure Factors that Determine the Product Selectivity , 1994 .

[63]  B. Höhlein,et al.  Methanol as an Energy Carrier , 2006 .

[64]  N. Muradov,et al.  Catalytic activity of carbons for methane decomposition reaction , 2005 .

[65]  George A. Olah,et al.  After Oil and Gas: Methanol Economy , 2004 .

[66]  Gao Qing Lu,et al.  Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 , 2003 .

[67]  George A. Olah,et al.  Beyond Oil and Gas: The Methanol Economy , 2005 .

[68]  C. Floriani,et al.  Stepwise reduction of carbon dioxide to formaldehyde and methanol: reactions of carbon dioxide and carbon dioxide like molecules with hydridochlorobis(cyclopentadienyl)zirconium(IV) , 1985 .

[69]  M. Gondal,et al.  Selective laser enhanced photocatalytic conversion of CO2 into methanol , 2004 .

[70]  Guo Xiaoming,et al.  Combustion synthesis of CuO–ZnO–ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol , 2009 .

[71]  Mark A. Johnson,et al.  Vibrational predissociation spectrum of the carbamate radical anion, C(5)H(5)N-CO(2)(-), generated by reaction of pyridine with (CO(2))(m)(-). , 2010, Journal of the American Chemical Society.

[72]  Andrew B. Bocarsly,et al.  A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential , 1994 .

[73]  Jeremy Rifkin,et al.  The Hydrogen Economy , 2021, Transitioning to a Prosperous, Resilient and Carbon-Free Economy.

[74]  Dong Wu,et al.  A Novel Process for the Preparation of Cu/ZnO and Cu/ZnO/Al2O3Ultrafine Catalyst: Structure, Surface Properties, and Activity for Methanol Synthesis from CO2+H2☆ , 1997 .

[75]  M. Rhodes,et al.  The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part II -- Transient-Response Infrared Studies , 2005 .

[76]  J. S. Lee,et al.  The Preparation and Characterisation of Pd–ZnO Catalysts for Methanol Synthesis , 2003 .

[77]  A. Wokaun,et al.  CO2 hydrogenation over metal/zirconia catalysts , 1999 .

[78]  V. Ostrovskii Mechanisms of methanol synthesis from hydrogen and carbon oxides at Cu–Zn-containing catalysts in the context of some fundamental problems of heterogeneous catalysis , 2002 .

[79]  M. Koper,et al.  Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals , 2013 .

[80]  Zhipan Liu,et al.  Mechanism of CO2 hydrogenation over Cu/ZrO2(2̅12) interface from first-principles kinetics Monte Carlo simulations , 2010 .

[81]  Robert B. May,et al.  Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. , 2011, Journal of the American Chemical Society.

[82]  K. Ohta,et al.  Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol , 2006 .

[83]  Jie Zhang,et al.  An efficient nickel catalyst for the reduction of carbon dioxide with a borane. , 2010, Journal of the American Chemical Society.

[84]  Xiaoming Zheng,et al.  Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3 , 2006 .

[85]  Makiko Kato,et al.  Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110) , 1997 .

[86]  George A. Olah,et al.  CO2 capture on easily regenerable hybrid adsorbents based on polyamines and mesocellular silica foam. Effect of pore volume of the support and polyamine molecular weight , 2014 .

[87]  T. Fujitani,et al.  Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen , 1995 .

[88]  K. Hara,et al.  Large Current Density CO2 Reduction under High Pressure Using Gas Diffusion Electrodes. , 1997 .

[89]  Y. Hori,et al.  Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons , 1995 .

[90]  David Milstein,et al.  Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO , 2011, Nature Chemistry.

[91]  Robert B. May,et al.  Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions , 2014 .

[92]  Jacques Lédé,et al.  SOLAR THERMOCHEMICAL CONVERSION OF BIOMASS , 1999 .

[93]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[94]  M. Bradford,et al.  CO2 Reforming of CH4 , 1999 .

[95]  Hui Li,et al.  Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: Scale-up , 2007 .

[96]  Ning Zhang,et al.  Characterization and DFT Research of Nd/TiO2: Photocatalyst for Synthesis of Methanol from CO2 and H2O , 2009 .

[97]  John T. S. Irvine,et al.  Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser , 2011 .

[98]  M. Aresta,et al.  Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. , 2012, ChemSusChem.

[99]  H. Vandenborre,et al.  Alkaline inorganic-membrane-electrolyte (IME) water electrolysis , 1980 .

[100]  G. Chinchen,et al.  Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants , 1987 .

[101]  H. Hofmann,et al.  Electrolysis : The important energy transformer in a world of sustainable energy , 1998 .

[102]  F. J. Waller,et al.  Methanol technology developments for the new millennium , 2001 .

[103]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[104]  Junji Nakamura,et al.  The chemical modification seen in the Cu/ZnO methanol synthesis catalysts , 2000 .

[105]  Francesco Frusteri,et al.  Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol , 2007 .

[106]  Ming Zhao,et al.  A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2 , 2013 .

[107]  Y. Momose,et al.  Electrochemical reduction of CO2 at copper electrodes and its relationship to the metal surface characteristics , 2002 .

[108]  Vaclav Smil,et al.  Energy at the Crossroads: Global Perspectives and Uncertainties , 2005 .

[109]  S. Fujita,et al.  Mechanisms of Methanol Synthesis from Carbon Dioxide and from Carbon Monoxide at Atmospheric Pressure over Cu/ZnO , 1995 .

[110]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[111]  L. Bromberg,et al.  Heavy Duty Vehicles Using Clean, High Efficiency Alcohol Engines , 2010 .

[112]  L. Vendier,et al.  Borane-mediated carbon dioxide reduction at ruthenium: formation of C1 and C2 compounds. , 2012, Angewandte Chemie.

[113]  Carl-Erik Grip,et al.  Methanol production from steel-work off-gases and biomass based synthesis gas , 2013 .

[114]  Fang Huang,et al.  The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. , 2010, Journal of the American Chemical Society.

[115]  Meyer Steinberg,et al.  Production of synthetic methanol from air and water using controlled thermonuclear reactor power—II. Capital investment and production costs , 1977 .

[116]  Yasuaki Okamoto,et al.  Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO2 catalysts , 1994 .

[117]  A. Bell,et al.  An Infrared Study of Methanol Synthesis from CO2 on Clean and Potassium-Promoted Cu/SiO2 , 1995 .

[118]  C. Delacourt,et al.  Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes I. Kinetic Study on Planar Silver and Gold Electrodes , 2010 .

[119]  K. Ohta,et al.  Electrochemical reduction of CO2 in copper particle-suspended methanol , 2006 .

[120]  H. Wendt,et al.  Nine years of research and development on advanced water electrolysis. A review of the research programme of the Commission of the European Communities , 1988 .

[121]  Y. Nitta,et al.  Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide , 1993 .

[122]  Ali T-Raissi,et al.  Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions , 2006 .

[123]  Gao Wengui,et al.  Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts , 2013 .

[124]  Thomas A. Adams,et al.  Optimal Design and Operation of Static Energy Polygeneration Systems , 2011 .

[125]  Manya Ranjan,et al.  Economic and energetic analysis of capturing CO2 from ambient air , 2011, Proceedings of the National Academy of Sciences.

[126]  Fang Huang,et al.  How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study. , 2011, Inorganic chemistry.

[127]  T. Inui,et al.  Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO , 1997 .

[128]  M. Arai,et al.  New Catalytic Functions of Pd and Pt Catalysts for Hydrogenolysis of Methyl Formate , 2001 .

[129]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[130]  K. Ohta,et al.  Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O , 2009 .

[131]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes , 1987 .

[132]  Waldemar Liebner,et al.  CO2-based methanol and DME – Efficient technologies for industrial scale production , 2011 .

[133]  Robert Palumbo,et al.  DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING—A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM , 1999 .

[134]  A. Fujishima,et al.  Electrochemical Reduction of CO2 with High Current Density in a CO2-Methanol Medium , 1995 .

[135]  Masaki Hirano,et al.  Dimethyl Ether Synthesis from Carbon Dioxide by Catalytic Hydrogenation (Part 1) , 2002 .

[136]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[137]  G. Bonura,et al.  Integrated synthesis of dimethylether via CO2 hydrogenation , 2004 .

[138]  Xiaoming Guo,et al.  Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts , 2009 .

[139]  C. Au,et al.  CO2 Hydrogenation to Methanol on a YBa2Cu3O7 Catalyst , 2000 .

[140]  C. Cannilla,et al.  Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation , 2013 .

[141]  George A. Olah,et al.  Direct Methanol Fuel Cells , 2004 .

[142]  G. P. Knowles,et al.  Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents , 2005 .

[143]  D. W. Gregg,et al.  Solar gasification of coal, activated carbon, coke and coal and biomass mixtures☆ , 1980 .

[144]  Robert T McGibbon,et al.  Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. , 2011, ChemSusChem.

[145]  K. Xie,et al.  Influence of the calcination on the activity and stability of the Cu/ZnO/Al2O3 catalyst in liquid phase methanol synthesis , 2010 .

[146]  M. Saito,et al.  Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane , 1993 .

[147]  A. Baiker,et al.  Copper- and Silver–Zirconia Aerogels: Preparation, Structural Properties and Catalytic Behavior in Methanol Synthesis from Carbon Dioxide , 1998 .

[148]  T. Kodama High-temperature solar chemistry for converting solar heat to chemical fuels , 2003 .

[149]  H. H. Gunardson,et al.  Produce CO-rich synthesis gas : Gas processing developments: a special report , 1999 .

[150]  X. Yue,et al.  Alternative Cathode Material for CO2 Reduction by High Temperature Solid Oxide Electrolysis Cells , 2012 .

[151]  Stephanie Ropenus,et al.  Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration , 2008 .

[152]  W. Yoon,et al.  Combined H2O and CO2 reforming of CH4 over nano-sized Ni/MgO-Al2O3 catalysts for synthesis gas production for gas to liquid (GTL): Effect of Mg/Al mixed ratio on coke formation , 2009 .

[153]  Kangnian Fan,et al.  CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalysts Prepared by a Novel Gel-Network-Coprecipitation Method , 2002 .

[154]  A. Bell,et al.  Effects of Zirconia Phase on the Synthesis of Methanol over Zirconia-Supported Copper , 2002 .

[155]  R. Bredesen,et al.  Carbon Dioxide Separation Technologies , 2003 .

[156]  Henrik Wenzel,et al.  Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability. , 2008, Environmental science & technology.

[157]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[158]  Meyer Steinberg,et al.  Production of synthetic methanol from air and water using controlled thermonuclear reactor power—I. technology and energy requirement , 1977 .

[159]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol using optical-fiber photoreactor , 2005 .

[160]  Eric A. C. Bushnell,et al.  A density functional theory investigation into the binding of the antioxidants ergothioneine and ovothiol to copper. , 2013, The journal of physical chemistry. A.

[161]  T. Fujitani,et al.  The role of metal oxides in promoting a copper catalyst for methanol synthesis , 1994 .

[162]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[163]  Aldo Steinfeld,et al.  Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air. , 2011, Environmental science & technology.

[164]  W. Yoon,et al.  Combined reforming of methane over supported Ni catalysts , 2007 .

[165]  Thomas Helmer Pedersen,et al.  Technical and Economic Assessment of Methanol Production from Biogas , 2014 .

[166]  Song Wang,et al.  The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation , 2011 .

[167]  Weize Wu,et al.  Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate , 2004 .

[168]  W. Yoon,et al.  Combined H2O and CO2 Reforming of Methane Over Ni–Ce–ZrO2 Catalysts for Gas to Liquids (GTL) , 2008 .

[169]  Jan Paul Pradier,et al.  Carbon dioxide chemistry : environmental issues , 1994 .

[170]  A. Steinfeld,et al.  CO2 splitting in an aerosol flow reactor via the two-step Zn/ZnO solar thermochemical cycle , 2010 .

[171]  G. Rahman,et al.  Conversion of carbon dioxide to methanol , 2012 .

[172]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[173]  Wan Mohd Ashri Wan Daud,et al.  Hydrogen production by methane decomposition: A review , 2010 .

[174]  A. Sayari,et al.  Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance , 2007 .

[175]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[176]  Rong Zhang,et al.  Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed , 2010 .

[177]  Gongshin Qi,et al.  Low-temperature methanol synthesis catalyzed over Cu/γ-Al2O3–TiO2 for CO2 hydrogenation , 2001 .

[178]  Riitta L. Keiski,et al.  The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2 , 2007 .

[179]  Jean-François Tremblay,et al.  VENTURE CAPITAL BASF backs $100 million Japanese investment fund , 2008 .

[180]  Juhani Laurikko,et al.  New concepts for biofuels in transportation Biomass-based methanol production and reduced emissions in advanced vehicles , 2001 .

[181]  Douglas W Stephan,et al.  Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. , 2010, Journal of the American Chemical Society.

[182]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[183]  Anne Simon Moffat,et al.  Methanol-Powered Cars Get Ready to Hit the Road , 1991, Science.

[184]  Ying Bai,et al.  Photocatalytic Reduction of CO2 to Methanol Using the InVO4-Based Photocatalysts , 2011 .

[185]  Kaoru Fujimoto,et al.  Effective utilization of remote coal through dimethyl ether synthesis , 2000 .

[186]  Jinfu Wang,et al.  Dimethyl Ether Synthesis from CO 2 Hydrogenation on a CuO−ZnO−Al 2 O 3 −ZrO 2 /HZSM-5 Bifunctional Catalyst , 2008 .

[187]  Pedro Ollero,et al.  Methanol synthesis from syngas obtained by supercritical water reforming of glycerol , 2013 .

[188]  Gang Yu,et al.  Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. , 2013, ACS applied materials & interfaces.

[189]  Chunshan Song,et al.  Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios , 2004 .

[190]  J. Skrzypek,et al.  Methanol synthesis from carbon dioxide and hydrogen over Mn-promoted copper/zinc/zirconia catalysts , 2004 .

[191]  J. Fierro,et al.  Pd-Modified Cu-Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures: Catalytic Structures and Performance , 2002 .

[192]  J. Bart,et al.  Copper-Zinc Oxide-Alumina Methanol Catalysts Revisited , 1987 .

[193]  Christian Sattler,et al.  Solar water splitting for hydrogen production with monolithic reactors , 2005 .

[194]  Julian R.H. Ross,et al.  Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review , 2011 .

[195]  H. Whittington,et al.  Methanol synthesis from flue-gas CO2 and renewable electricity: A feasibility study , 2003 .

[196]  T. Fujitani,et al.  Development of Cu/ZnO-based high performance catalysts for methanol synthesis by CO2 hydrogenation , 1995 .

[197]  James R. McKone,et al.  Will Solar-Driven Water-Splitting Devices See the Light of Day? , 2014 .

[198]  Jingjie Wu,et al.  Electrochemical Reduction of Carbon Dioxide II. Design, Assembly, and Performance of Low Temperature Full Electrochemical Cells , 2013 .

[199]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[200]  Everett B. Anderson,et al.  Research Advances towards Low Cost, High Efficiency PEM Electrolysis , 2010, ECS Transactions.

[201]  A. Abbott,et al.  Electrochemical Reduction of CO2 in a Mixed Supercritical Fluid , 2000 .

[202]  Yutaek Seo,et al.  A highly effective and stable nano-sized Ni/MgO–Al2O3 catalyst for gas to liquids (GTL) process , 2008 .

[203]  Youssef Belmabkhout,et al.  Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification , 2010 .

[204]  G. Flamant,et al.  Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders , 2009 .

[205]  M. Beller,et al.  Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials , 2010 .

[206]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[207]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[208]  Richard Pearson,et al.  Gasoline-ethanol-methanol tri-fuel vehicle development and its role in expediting sustainable organic fuels for transport , 2009 .

[209]  Burkhard Raguse,et al.  Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film , 2002 .

[210]  T. B. Reed,et al.  Methanol: A Versatile Fuel for Immediate Use , 1973, Science.

[211]  A. Wokaun,et al.  Hydrogenation of carbon dioxide over silver promoted copper/zirconia catalysts , 1993 .

[212]  G. Flamant,et al.  Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen , 2008 .

[213]  A. Steinfeld,et al.  Solar-driven gasification of carbonaceous feedstock-a review , 2011 .

[214]  Sichao Ma,et al.  Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. , 2014, ChemSusChem.

[215]  Fatih Köleli,et al.  Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium , 2004 .

[216]  Young Gul Kim,et al.  Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2 and CO/H2 , 1995 .

[217]  D. Bianchi,et al.  Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol , 1995 .

[218]  Jianguo Liu,et al.  Ultrathin, single-crystal WO(3) nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO(2) into hydrocarbon fuels under visible light. , 2012, ACS applied materials & interfaces.

[219]  R. Eisenberg,et al.  Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt , 1980 .

[220]  J. Flake,et al.  Electrochemical Reduction of CO2 at Cu Nanocluster / (101̅0) ZnO Electrodes , 2013 .

[221]  Jingjie Wu,et al.  Effects of the Electrolyte on Electrochemical Reduction of CO2 on Sn Electrode , 2012 .

[222]  Akira Fujishima,et al.  PHOTOELECTROCHEMICAL REDUCTION OF CO2 IN A HIGH-PRESSURE CO2 + METHANOL MEDIUM AT P-TYPE SEMICONDUCTOR ELECTRODES , 1998 .

[223]  Marc Marshall,et al.  Thermal Treatment of Algae for Production of Biofuel , 2013 .

[224]  Tohru S. Suzuki,et al.  Electrochemical Reduction of CO2 to Methane at the Cu Electrode in Methanol with Sodium Supporting Salts and Its Comparison with Other Alkaline Salts , 2006 .

[225]  J. Andresen,et al.  Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 , 2003 .

[226]  Eric D. Larson,et al.  Technology for Electricity and Fuels from Biomass , 1993 .

[227]  G. Olah,et al.  Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents , 2010 .

[228]  F. Hahn,et al.  FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium , 2010 .

[229]  Junji Nakamura,et al.  The role of ZnO in Cu/ZnO methanol synthesis catalysts — morphology effect or active site model? , 2001 .

[230]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[231]  G. Italiano,et al.  Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH , 2008 .

[232]  C. Bae,et al.  The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review , 2008 .

[233]  Yin-Zu Chen,et al.  Liquid-phase synthesis of methanol from CO2/H2 over ultrafine CuB catalysts , 2001 .

[234]  S. Satyapal,et al.  Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications , 2001 .

[235]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[236]  Yoshinori Kanamori,et al.  Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2 — effects of the calcination and reduction conditions on the catalytic performance , 2001 .

[237]  K. Klabunde,et al.  The catalytic methanol synthesis over nanoparticle metal oxide catalysts , 2003 .

[238]  G. I. Lin,et al.  Fundamentals of Methanol Synthesis and Decomposition , 2003 .

[239]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[240]  Yuhan Sun,et al.  Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2013 .

[241]  R. Mark Ormerod Solid oxide fuel cells , 2003 .

[242]  S. Shironita,et al.  Methanol generation by CO2 reduction at a Pt–Ru/C electrocatalyst using a membrane electrode assembly , 2013 .

[243]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[244]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[245]  C. Musgrave,et al.  Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. , 2013, Journal of the American Chemical Society.

[246]  David William Keith,et al.  Low energy packed tower and caustic recovery for direct capture of CO2 from air , 2009 .

[247]  R. Leysen,et al.  Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries , 1998 .

[248]  Kaname Ito,et al.  Selective Formation of Formic Acid, Oxalic Acid, and Carbon Monoxide by Electrochemical Reduction of Carbon Dioxide , 1987 .

[249]  M. Specht,et al.  Comparison of CO2 sources for the synthesis of renewable methanol , 1998 .

[250]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[251]  André Faaij,et al.  Future prospects for production of methanol and hydrogen from biomass , 2002 .

[252]  Rodrigo Serna-Guerrero,et al.  New Insights into the Interactions of CO2 with Amine-Functionalized Silica , 2008 .

[253]  Fernando G. Martins,et al.  Recent developments on carbon capture and storage: An overview , 2011 .

[254]  I. Chorkendorff,et al.  Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2 , 1994 .

[255]  Matthias Beller,et al.  Towards a practical setup for hydrogen production from formic acid. , 2013, ChemSusChem.

[256]  Yuhan Sun,et al.  CO2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions , 2013 .

[257]  M. Beller,et al.  Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts , 2009 .

[258]  A. Wokaun,et al.  Hydrogenation of CO2 Over Copper, Silver and Gold/Zirconia Catalysts: Comparative Study of Catalyst Properties and Reaction Pathways , 1993 .

[259]  John L DiMeglio,et al.  Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. , 2013, Journal of the American Chemical Society.

[260]  Daniel L DuBois,et al.  Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. , 2009, Accounts of chemical research.

[261]  Yuhan Sun,et al.  Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst , 2006 .

[262]  O. Badr,et al.  Renewable hydrogen utilisation for the production of methanol , 2007 .

[263]  G.L.M.A. Van Rens,et al.  Cost estimation of biomass-to-fuel plants producing methanol, dimethylether or hydrogen , 2011 .

[264]  David W. Keith,et al.  Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis , 2009 .

[265]  Steven Sherman,et al.  Nuclear powered CO2 capture from the atmosphere , 2008 .

[266]  Aldo Steinfeld,et al.  Thermochemical production of fuels with concentrated solar energy. , 2010, Optics express.

[267]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[268]  E. McFarland,et al.  C1 Coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites. , 2004, Chemical communications.

[269]  David W Keith,et al.  Carbon dioxide capture from atmospheric air using sodium hydroxide spray. , 2008, Environmental science & technology.

[270]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[271]  Aldo Steinfeld,et al.  Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel , 2011 .

[272]  G. Olah,et al.  Silica Nanoparticles as Supports for Regenerable CO2 Sorbents , 2012 .

[273]  A. Fujishima,et al.  Electrochemical reduction of CO2 with high current density in a CO2 + methanol medium at various metal electrodes , 1996 .

[274]  J. Niemantsverdriet,et al.  Concepts of modern catalysis and kinetics , 2005 .

[275]  正樹 平野,et al.  接触水素化反応による炭酸ガスからのジメチルエーテル合成技術(第2報)メタノール合成触媒とメタノール脱水触媒の複合触媒 , 2004 .

[276]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[277]  D. Stephan,et al.  Stoichiometric CO2 reductions using a bis-borane-based frustrated Lewis pair. , 2012, Chemical communications.

[278]  T. Choudhary,et al.  Energy-efficient syngas production through catalytic oxy-methane reforming reactions. , 2008, Angewandte Chemie.

[279]  Hyun-Seog Roh,et al.  CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process , 2009 .

[280]  Andrew J. Schmidt,et al.  Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor , 2013 .

[281]  Toshiaki Hanaoka,et al.  Co-gasification of woody biomass and coal with air and steam , 2007 .

[282]  D. Tryk,et al.  Electrochemical Reduction of CO 2 with Transition Metal Phthalocyanine and Porphyrin Complexes Supported on Activated Carbon Fibers , 2002 .

[283]  Tao Wang,et al.  Moisture swing sorbent for carbon dioxide capture from ambient air. , 2011, Environmental science & technology.

[284]  Sung-Hwan Han,et al.  Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process) , 1999 .

[285]  David Scott,et al.  Hydrogen from remote excess hydroelectricity. Part II: Hydrogen peroxide or biomethanol , 1995 .

[286]  Robert B. May,et al.  Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. , 2014, ChemSusChem.

[287]  Dermot O'Hare,et al.  Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. , 2009, Angewandte Chemie.

[288]  I. Metcalfe,et al.  Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/A12O3 catalysts , 1996 .

[289]  Robert B. May,et al.  Organoamines-grafted on nano-sized silica for carbon dioxide capture , 2013 .

[290]  Y. Amenomiya Methanol synthesis from CO2 + H2 II. Copper-based binary and ternary catalysts , 1987 .

[291]  C. Floriani,et al.  Stoicheiometric reduction of CO and CO2 to methanol: evidence for carbon monoxide insertion into zirconium–hydrogen bond , 1978 .

[292]  K. Lackner,et al.  Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau. , 2013, Environmental science & technology.

[293]  Roger D. Aines,et al.  Systems analysis and cost estimates for large scale capture of carbon dioxide from air , 2011 .

[294]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[295]  Hansie Knoetze,et al.  Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance , 2010 .

[296]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[297]  K. Lackner Washing carbon out of the air. , 2010, Scientific American.

[298]  K. Lammertsma,et al.  Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over .gamma.-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl al , 1985 .

[299]  Pierre Van Rysselberghe,et al.  Reduction of Carbon Dioxide on Mercury Cathodes , 1954 .

[300]  Xiaoming Zheng,et al.  Study of CO2 hydrogenation to methanol over Cu-V/γ-Al2O3 catalyst , 2007 .

[301]  M. Saito R&D activities in Japan on methanol synthesis from CO2 and H2 , 1998 .

[302]  Frank Zeman,et al.  Energy and material balance of CO2 capture from ambient air. , 2007, Environmental science & technology.

[303]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[304]  Christopher W. Jones,et al.  Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. , 2012, ChemSusChem.

[305]  R. L. Bain Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers , 1992 .

[306]  Fatih Köleli,et al.  Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media , 2003 .

[307]  Masami Takeuchi,et al.  The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed , 2001 .

[308]  Haifeng Dong,et al.  Carbon capture with ionic liquids: overview and progress , 2012 .

[309]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[310]  Juergen Fischer,et al.  Fundamental investigations and electrochemical engineering aspects concerning an advanced concept for alkaline water electrolysis , 1980 .

[311]  Stéphane Abanades,et al.  CO2 Dissociation and Upgrading from Two-Step Solar Thermochemical Processes Based on ZnO/Zn and SnO2/SnO Redox Pairs , 2010 .

[312]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[313]  Marc-André Courtemanche,et al.  A tris(triphenylphosphine)aluminum ambiphilic precatalyst for the reduction of carbon dioxide with catecholborane , 2013 .

[314]  David W. Keith,et al.  CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy , 2002 .

[315]  K. Hara,et al.  High Efficiency Electrochemical Reduction of Carbon Dioxide under High Pressure on a Gas Diffusion Electrode Containing Pt Catalysts , 1995 .

[316]  A. Fujishima,et al.  Electrochemical Reduction of CO2 to Hydrocarbons with High Current Density in a CO2-Methanol Medium , 1995 .

[317]  A. Kozłowska,et al.  Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2 , 2003 .

[318]  M. Gondal,et al.  CO2 Conversion into Methanol Using Granular Silicon Carbide (α6H-SiC): A Comparative Evaluation of 355 nm Laser and Xenon Mercury Broad Band Radiation Sources , 2012, Catalysis Letters.

[319]  Jun Yano,et al.  Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation , 2008 .

[320]  Aldo Steinfeld,et al.  Thermoneutral tri-reforming of flue gases from coal- and gas-fired power stations , 2006 .

[321]  J. Ivy,et al.  Summary of Electrolytic Hydrogen Production: Milestone Completion Report , 2004 .

[322]  S. Chakraborty,et al.  Catalytic properties of nickel bis(phosphinite) pincer complexes in the reduction of CO2 to methanol derivatives , 2012 .

[323]  Zheng Jiang,et al.  Energy Storage via Carbon-Neutral Fuels Made From CO $_{2}$, Water, and Renewable Energy , 2012, Proceedings of the IEEE.

[324]  E. J. Anthony,et al.  Carbon capture and storage update , 2014 .

[325]  Amit Kumar,et al.  Biofuels and biochemicals production from forest biomass in Western Canada , 2011 .

[326]  Y. Momose,et al.  Relationship between hydrocarbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode , 1997 .

[327]  K. Fujimoto,et al.  Promotive SMSI Effect for Hydrogenation of Carbon Dioxide to Methanol on a Pd/CeO2 Catalyst , 1994 .

[328]  Colin Pritchard,et al.  On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels , 2008 .

[329]  S. Ebbesen,et al.  Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells , 2012 .

[330]  R. Eisenberg,et al.  The iridium complex catalyzed reduction of carbon dioxide to methoxide by alkylsilanes , 1989 .

[331]  Ulf Bossel,et al.  Does a Hydrogen Economy Make Sense? , 2006, Proceedings of the IEEE.

[332]  J. Fierro,et al.  Effect of Pd on Cu-Zn Catalysts for the Hydrogenation of CO2 to Methanol: Stabilization of Cu Metal Against CO2 Oxidation , 2002 .

[333]  Young-Soon Baek,et al.  Tri-reforming of CH4 using CO2 for production of synthesis gas to dimethyl ether , 2003 .

[334]  Gilles Flamant,et al.  Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy , 2006 .

[335]  P. Spath,et al.  Preliminary screening: Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas , 2003 .

[336]  Yueping Fang,et al.  Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation , 2012 .

[337]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[338]  G. Olah,et al.  Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. , 2013, Journal of the American Chemical Society.

[339]  Daniel R. Cohn,et al.  Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines , 2010 .

[340]  T. Yashima,et al.  Adsorption of Carbon Dioxide on Aminosilane-modified Mesoporous Silica , 2005 .

[341]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[342]  C. Delacourt,et al.  Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes II. Study of an Electrolysis Cell Making Syngas ( C O + H 2 ) from C O 2 and H 2 O Reduction at Room Temperature , 2010 .

[343]  Matthias Beller,et al.  Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. , 2008, Angewandte Chemie.

[344]  Yoshio Hori,et al.  Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide , 2003 .

[345]  Roger A. Pielke,et al.  An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy , 2009 .

[346]  Yuhan Sun,et al.  Methanol synthesis from CO2 hydrogenation over La–M–Cu–Zn–O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors , 2014 .

[347]  M. A. Baltanás,et al.  Enhancement of the catalytic performance to methanol synthesis from CO2/H2 by gallium addition to palladium/silica catalysts , 2000 .

[348]  Addison K. Stark,et al.  Multi-criteria lifecycle evaluation of transportation fuels derived from biomass gasification , 2010 .

[349]  Meyer Steinberg,et al.  Hynol—An economical process for methanol production from biomass and natural gas with reduced CO2 emission , 1993 .

[350]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[351]  T. Wadayama,et al.  Electrochemical reduction of CO2 on silver as probed by surface-enhanced Raman scattering , 1995 .

[352]  Weiwei Lu,et al.  Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO–ZnO–Al2O3–ZrO2/HZSM-5 catalysts , 2004 .

[353]  Eric D. Larson,et al.  Methanol and hydrogen from biomass for transportation , 1995 .

[354]  K. C. Waugh,et al.  Synthesis of Methanol , 1988 .

[355]  A. Bell,et al.  Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2 , 1997 .

[356]  Hu Lin,et al.  Economic analysis of coal-based polygeneration system for methanol and power production , 2010 .

[357]  Peter G. Loutzenhiser,et al.  CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis , 2008 .

[358]  N. Houbak,et al.  Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water , 2010 .

[359]  Guo Xiaoming,et al.  Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation , 2010 .

[360]  Jackie Y Ying,et al.  Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. , 2009, Angewandte Chemie.

[361]  Jinfu Wang,et al.  A Cu/Zn/Al/Zr Fibrous Catalyst that is an Improved CO2 Hydrogenation to Methanol Catalyst , 2007 .

[362]  D. Stephan,et al.  CO2 reduction via aluminum complexes of ammonia boranes. , 2013, Dalton transactions.

[363]  Meyer Steinberg The Carnol process system for CO2 mitigation and methanol production , 1997 .

[364]  Raffaele Di Gregorio The 3-RRS Wrist: A New, Simple and Non-Overconstrained Spherical Parallel Manipulator , 2004 .

[365]  Chelsea A. Huff,et al.  Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. , 2011, Journal of the American Chemical Society.

[366]  J. Fierro,et al.  Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts , 2013 .

[367]  Pilar Ramírez de la Piscina,et al.  Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors , 2001 .

[368]  K. Ohta,et al.  Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol , 2007 .

[369]  Ta-Jen Huang,et al.  Synergistic Catalysis of Carbon Dioxide Hydrogenation into Methanol by Yttria-Doped Ceria/γ-Alumina-Supported Copper Oxide Catalysts: Effect of Support and Dopant , 2002 .

[370]  R. T. Yang,et al.  CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. , 2011, Environmental science & technology.

[371]  A. Wokaun,et al.  Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide , 1992 .

[372]  C. Cannilla,et al.  The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol , 2014 .

[373]  K. Schaber,et al.  Methanol from atmospheric carbon dioxide : A liquid zero emission fuel for the future , 1996 .

[374]  Yisheng Tan,et al.  A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO2 Hydrogenation , 2006 .

[375]  Akira Naitoh,et al.  Electrochemical reduction of CO2 in methanol at −30°C , 1995 .

[376]  G. Olah,et al.  Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. , 2013, Journal of the American Chemical Society.

[377]  Aldo Steinfeld,et al.  A two-zone solar-driven gasifier concept: Reactor design and experimental evaluation with bagasse particles , 2014 .

[378]  Anthony V. Bridgwater,et al.  Catalysis in thermal biomass conversion , 1994 .

[379]  Liang‐Nian He,et al.  Homogeneous hydrogenation of carbon dioxide to methanol , 2014 .

[380]  F. Maréchal,et al.  Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis , 2010 .

[381]  F. Solymosi,et al.  Catalytic hydrogenation of CO2 over supported palladium , 1986 .

[382]  Andrew A. Peterson,et al.  Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces , 2011 .

[383]  A. Bell,et al.  Hydrogenation of CO2 and CO2/CO mixtures over copper-containing catalysts , 1990 .

[384]  Qi Sun,et al.  A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation , 1998 .

[385]  Laihong Shen,et al.  Integrated Analysis of Energy, Economic, and Environmental Performance of Biomethanol from Rice Straw in China , 2009 .

[386]  Michael Schwartz,et al.  Carbon Dioxide Reduction to Alcohols using Perovskite‐Type Electrocatalysts , 1993 .

[387]  M. Saito,et al.  Homogeneous Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Ruthenium Cluster Anions in the Presence of Halide Anions , 1995 .

[388]  N. Sonoyama,et al.  Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2 , 1999 .

[389]  G. Pajonk,et al.  Catalytic properties of new Cu based catalysts containing Zr and/or V for methanol synthesis from a carbon dioxide and hydrogen mixture , 1992 .

[390]  F. Joó Breakthroughs in hydrogen storage--formic Acid as a sustainable storage material for hydrogen. , 2008, ChemSusChem.

[391]  Rikard Gebart,et al.  Two years experience of the BioDME project—A complete wood to wheel concept , 2014 .

[392]  P. M. Crawford,et al.  Is oil shale America's answer to peak-oil challenge? , 2004 .

[393]  Masami Takeuchi,et al.  A 50 kg/day class test plant for methanol synthesis from CO2 and H2 , 1998 .

[394]  Yu Luo,et al.  Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells , 2013 .

[395]  H. Ahouari,et al.  Methanol synthesis from CO2 hydrogenation over copper based catalysts , 2013, Reaction Kinetics, Mechanisms and Catalysis.

[396]  W. Reschetilowski Alternative resources for the methanol economy , 2013 .

[397]  R. Periana,et al.  A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol , 1993, Science.

[398]  F. Miloua,et al.  Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst , 2009 .

[399]  K. W. Frese,et al.  Reduction of Carbon Dioxide to Methanol on n ‐ and p ‐ GaAs and p ‐ InP . Effect of Crystal Face, Electrolyte and Current Density , 1983 .

[400]  D. Wayne Goodman,et al.  Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts , 1997 .

[401]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[402]  Sun Qi,et al.  A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods , 1996 .

[403]  Yue Chang,et al.  Cu–Zn–Al Oxide Cores Packed by Metal-Doped Amorphous Silica–Alumina Membrane for Catalyzing the Hydrogenation of Carbon Dioxide to Dimethyl Ether , 2012 .

[404]  K. Rajeshwar,et al.  Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. , 2013, Chemical communications.

[405]  Zhaobo Chen,et al.  A novel application of the SAWD-Sabatier-SPE integrated system for CO2 removal and O2 regeneration in submarine cabins during prolonged voyages , 2009 .

[406]  Thore Berntsson,et al.  System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis , 2012 .

[407]  M. Constantinescu,et al.  Coupled CO2 recovery from the atmosphere and water electrolysis: Feasibility of a new process for hydrogen storage , 1995 .

[408]  A. Wokaun,et al.  Methanol synthesis reactions over a CuZr based catalyst investigated using periodic variations of reactant concentrations , 2001 .

[409]  Robert B. May,et al.  Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate. , 2011, ChemSusChem.

[410]  K. Lackner Capture of carbon dioxide from ambient air , 2009 .

[411]  Björn Andersson,et al.  Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector , 2003 .

[412]  Sebastian Verhelst,et al.  Performance and emissions of iso-stoichiometric ternary GEM blends on a production SI engine , 2014 .

[413]  S. Sabo-Etienne,et al.  Trapping formaldehyde in the homogeneous catalytic reduction of carbon dioxide. , 2013, Angewandte Chemie.

[414]  J. Fierro,et al.  Reverse Topotactic Transformation of a Cu–Zn–Al Catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures , 2002 .

[415]  Pilar Ramírez de la Piscina,et al.  Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter , 2001 .

[416]  M. Wainwright,et al.  Methanol Synthesis from CO2 Using Skeletal Copper Catalysts Containing Co-precipitated Cr2O3 and ZnO , 2003 .

[417]  V. Subramani,et al.  Catalytic Steam Reforming Technology for the Production of Hydrogen and Syngas , 2009 .

[418]  Sylvain Leduc,et al.  Location of a biomass based methanol production plant: A dynamic problem in northern Sweden , 2010 .

[419]  Christopher W. Jones,et al.  Poly(allylamine)–Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air , 2011 .

[420]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[421]  Robert H. Borgwardt,et al.  Methanol production from biomass and natural gas as transportation fuel , 1998 .

[422]  Frederick M MacDonnell,et al.  Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts. , 2013, Journal of the American Chemical Society.

[423]  Reginald B. H. Tan,et al.  Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration , 2006 .

[424]  R. Prins,et al.  Basic Metal Oxides as Cocatalysts for Cu/SiO2Catalysts in the Conversion of Synthesis Gas to Methanol , 1998 .

[425]  Y. Soong,et al.  Methyl formate hydrogenolysis for low-temperature methanol synthesis , 1992 .

[426]  M. Rhodes,et al.  The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I -- Steady-State Studies , 2005 .

[427]  Jie Zhang,et al.  Pincer-ligated nickel hydridoborate complexes: the dormant species in catalytic reduction of carbon dioxide with boranes. , 2013, Inorganic chemistry.

[428]  M. Saito,et al.  Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen , 1996 .

[429]  A. Bell,et al.  In Situ Infrared Study of Methanol Synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 , 1997 .

[430]  Friedrich Asinger Methanol — Chemie und Energierohstoff , 1986 .

[431]  S. Collins,et al.  Methanol synthesis from CO2/H2 using Ga2O3–Pd/silica catalysts: Kinetic modeling , 2009 .

[432]  Akira Saji,et al.  Electrochemical reduction of CO2 at an Ag electrode in KOH-methanol at low temperature , 1998 .

[433]  K. Ohta,et al.  Electrochemical reduction of CO2 on Au in KOH + methanol at low temperature , 1998 .

[434]  Gao Qing Lu,et al.  Nanocrystalline zirconia as catalyst support in methanol synthesis , 2005 .

[435]  Hui Hong,et al.  Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials , 2010 .

[436]  G. Trunfio,et al.  How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol , 2013 .

[437]  Laura L. Snuffin,et al.  Catalytic Electrochemical Reduction of CO2 in Ionic Liquid EMIMBF3Cl , 2011 .

[438]  Minghua Wang,et al.  Energy savings by co-production: A methanol/electricity case study , 2010 .

[439]  Craig A. Grimes,et al.  Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2011 .

[440]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[441]  D. Stephan,et al.  Synthesis and Reactivity of Ruthenium Hydride Complexes Containing a Tripodal Aminophosphine Ligand , 2014 .

[442]  Hong‐Cai Zhou,et al.  Enhancing amine-supported materials for ambient air capture. , 2012, Angewandte Chemie.

[443]  G. Olah,et al.  Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device , 2013 .

[444]  J. Fierro,et al.  CO2 hydrogenation over Pd-modified methanol synthesis catalysts , 1998 .

[445]  J. Leger,et al.  Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: A spectroscopic study , 2010 .

[446]  Jing Chen,et al.  Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes , 2009 .

[447]  J. Choudhury New Strategies for CO2‐to‐Methanol Conversion , 2012 .

[448]  Piotr Olszewski,et al.  Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 , 2006 .

[449]  Paul J Dyson,et al.  A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. , 2008, Angewandte Chemie.

[450]  Michael Obersteiner,et al.  Methanol production by gasification using a geographically explicit model , 2009 .

[451]  G. Trunfio,et al.  Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation , 2013 .

[452]  Akira Okumura,et al.  Preparation of cu-solid polymer electrolyte composite electrodes and application to gas-phase electrochemical reduction of CO2 , 1995 .

[453]  K. Ohta,et al.  Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt , 2007 .

[454]  E. Carter,et al.  Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. , 2012, Journal of the American Chemical Society.

[455]  Jeremiah J Gassensmith,et al.  Strong and reversible binding of carbon dioxide in a green metal-organic framework. , 2011, Journal of the American Chemical Society.

[456]  Carl M. Stoots,et al.  Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide , 2009 .

[457]  Y. Hori,et al.  Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes , 2002 .

[458]  J. Llorca,et al.  Methanol synthesis from CO2 and H2 over gallium promoted copper-based supported catalysts. Effect of hydrocarbon impurities in the CO2/H2 source , 2001 .

[459]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[460]  W. X. Pan,et al.  Methanol synthesis activity of Cu/ZnO catalysts , 1988 .

[461]  G. Olah,et al.  Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere , 2012 .