Unified model of secondary electron cascades in diamond

In this article we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of x-ray photons. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1 and 10keV. The present article expands our earlier work [B. Ziaja, D. van der Spoel, A. Szoke, and J. Hajdu, Phys. Rev. B 64, 214104 (2001), Phys. Rev. B 66, 024116 (2002)] by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free electron gas as the system cools. The dissipation of...

[1]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[2]  L. R. Peterson Discrete Deposition of Energy by Electrons in Gases , 1969 .

[3]  R. C. Alig Scattering by ionization and phonon emission in semiconductors. II. Monte Carlo calculations , 1983 .

[4]  J. Baró,et al.  PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter , 1995 .

[5]  Klaus Sokolowski-Tinten,et al.  Generation of dense electron-hole plasmas in silicon , 2000 .

[6]  N. Arista,et al.  Dielectric description of wakes and stopping powers in solids , 1998 .

[7]  Auger-electron cascades in diamond and amorphous carbon , 2001, cond-mat/0109430.

[8]  J. C. Ashley Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter , 1990 .

[9]  Y. Kamakura,et al.  Verification of hot hole scattering rates in silicon by quantum-yield experiment , 2000 .

[10]  P. F. Manfredi,et al.  Transport Properties of Natural Diamond Used as Nuclear Particle Detector for a Wide Temperatue Range , 1979, IEEE Transactions on Nuclear Science.

[11]  T. Tang,et al.  Impact ionization coefficient and energy distribution function at high fields in semiconductors , 1989 .

[12]  Rudd,et al.  Binary-encounter-dipole model for electron-impact ionization. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  Richard A. London,et al.  Computational simulations of high-intensity x-ray matter interaction , 2001, SPIE Optics + Photonics.

[14]  D. R. Penn Electron mean free paths for free-electron-like materials , 1976 .

[15]  D. Sayre,et al.  X-ray microscopy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[16]  Arnold,et al.  Theory of high-field electron transport and impact ionization in silicon dioxide. , 1994, Physical review. B, Condensed matter.

[17]  Yong-ki Kim,et al.  Extension of the binary-encounter-dipole model to relativistic incident electrons , 2000 .

[18]  S. Russo,et al.  Comparative Hartree-Fock and density-functional theory study of cubic and hexagonal diamond , 2002 .

[19]  E. Fermi Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen , 1924 .

[20]  Kimura,et al.  Time-dependent aspects of electron degradation. II. General theory. , 1988, Physical review. A, General physics.

[21]  K. Taniguchi,et al.  Impact ionization model for full band Monte Carlo simulation in GaAs , 1996 .

[22]  P. Siffert,et al.  Preparation and Characteristics of Natural Diamond Nuclear Radiation Detectors , 1975, IEEE Transactions on Nuclear Science.

[23]  C. W. Struck,et al.  Scattering by ionization and phonon emission in semiconductors , 1980 .

[24]  C. Canali,et al.  Electrical properties and performances of natural diamond nuclear radiation detectors , 1979 .

[25]  Oeztuerk Monte Carlo simulation of keV-electron transport in solid media , 1993 .

[26]  W. S. Khokle,et al.  Transition Probability of Impact Ionization by Holes in Silicon , 1988 .

[27]  K. Yoshihara,et al.  Calculations of 'effective' inelastic mean free paths in solids , 1996 .

[28]  J. C. Ashley Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data , 1988 .

[29]  Y. Kamakura,et al.  Impact Excitation of Carriers in Diamond under Extremely High Electric Fields , 2001 .

[30]  S. Gamal,et al.  Simple and efficient Monte Carlo simulation of high-temperature hole transport in silicon and diamond , 2001 .

[31]  D. R. Penn,et al.  Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range , 1991 .

[32]  S. Goodnick,et al.  Hole initiated impact ionization in wide band gap semiconductors , 1999 .

[33]  E. Kane Electron Scattering by Pair Production in Silicon , 1967 .

[34]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths for 31 materials , 1988 .

[35]  J.-Ch. Kuhr,et al.  Monte Carlo simulation of electron emission from solids , 1999 .

[36]  K. Ohya,et al.  Comparative study of secondary electron emission from solids under positron and electron impacts , 2000 .

[37]  H. Wabnitz,et al.  Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser , 2002, Nature.

[38]  K. Taniguchi,et al.  A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation , 1996 .

[39]  C. Powell The quest for universal curves to describe the surface sensitivity of electron spectroscopies , 1988 .

[40]  J. V. Houdt,et al.  Modelling of the hole-initiated impact ionization current in the framework of hydrodynamic equations , 2002 .

[41]  J. C. Ashley Energy‐loss probabilities for electrons, positrons, and protons in condensed matter , 1991 .

[42]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[43]  Justin S. Wark,et al.  Plasma-based studies with intense X-ray and particle beam sources , 2002 .

[44]  David Liljequist,et al.  Monte Carlo simulation of 0.1–100 keV electron and positron transport in solids using optical data and partial wave methods , 1996 .

[45]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  C. Joachain,et al.  Physics of atoms and molecules , 1982 .

[47]  K. Hess,et al.  First-principles Monte Carlo simulation of transport in Si , 1994 .

[48]  David van der Spoel,et al.  Space-time evolution of electron cascades in diamond , 2002 .

[49]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.