Hybrid Levenberg-Marquardt and weak-constraint ensemble Kalman smoother method

Abstract. The ensemble Kalman smoother (EnKS) is used as a linear least-squares solver in the Gauss–Newton method for the large nonlinear least-squares system in incremental 4DVAR. The ensemble approach is naturally parallel over the ensemble members and no tangent or adjoint operators are needed. Furthermore, adding a regularization term results in replacing the Gauss–Newton method, which may diverge, by the Levenberg–Marquardt method, which is known to be convergent. The regularization is implemented efficiently as an additional observation in the EnKS. The method is illustrated on the Lorenz 63 model and a two-level quasi-geostrophic model.

[1]  Wolfgang Nowak,et al.  Efficient Computation of Linearized Cross-Covariance and Auto-Covariance Matrices of Interdependent Quantities , 2003 .

[2]  Xuguang Wang,et al.  Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework , 2010 .

[3]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[4]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[5]  Serge Gratton,et al.  On the convergence of a non-linear ensemble Kalman smoother , 2014, Applied Numerical Mathematics.

[6]  Dean S. Oliver,et al.  An Iterative EnKF for Strongly Nonlinear Systems , 2012 .

[7]  P. Gill,et al.  Algorithms for the Solution of the Nonlinear Least-Squares Problem , 1978 .

[8]  Jonathan D. Beezley,et al.  ENSEMBLE KALMAN FILTERS IN COUPLED ATMOSPHERE-SURFACE MODELS , 2009 .

[9]  B. Hunt,et al.  A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96 , 2007 .

[10]  Lance M. Leslie,et al.  A Two-Layer Quasi-Geostrophic Model of Summer Trough Formation in the Australian Subtropical Easterlies , 1984 .

[11]  Jean-Michel Brankart,et al.  Implementation of a reduced rank square-root smoother for high resolution ocean data assimilation , 2010 .

[12]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[13]  Qingnong Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part III: Antarctic Applications with Advanced Research WRF Using Real Data , 2013 .

[14]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[15]  Jeffrey L. Anderson,et al.  An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems , 2008 .

[16]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[17]  Serge Gratton,et al.  Limited‐memory preconditioners, with application to incremental four‐dimensional variational data assimilation , 2008 .

[18]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[19]  Q. Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test , 2008 .

[20]  Chris Snyder,et al.  Assimilating vortex position with an ensemble kalman filter , 2005 .

[21]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[22]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[23]  Matthew Fisher,et al.  On the equivalence between Kalman smoothing and weak‐constraint four‐dimensional variational data assimilation , 2005, Quarterly Journal of the Royal Meteorological Society.

[24]  Geir Evensen,et al.  The ensemble Kalman filter for combined state and parameter estimation: MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS , 2009 .

[25]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Pavel Sakov,et al.  Relation between two common localisation methods for the EnKF , 2011 .

[28]  Craig J. Johns,et al.  A two-stage ensemble Kalman filter for smooth data assimilation , 2008, Environmental and Ecological Statistics.

[29]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[30]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[31]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[32]  Fuqing Zhang,et al.  Coupling ensemble Kalman filter with four-dimensional variational data assimilation , 2009 .

[33]  Dean S. Oliver,et al.  An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation , 2007 .

[34]  G. Evensen,et al.  An ensemble Kalman smoother for nonlinear dynamics , 2000 .

[35]  Bradley M. Bell,et al.  The Iterated Kalman Smoother as a Gauss-Newton Method , 1994, SIAM J. Optim..

[36]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[37]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[38]  Q. Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW) , 2009 .

[39]  Marc Bocquet,et al.  Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems , 2012 .

[40]  Yunfeng Wang,et al.  An ensemble-based three-dimensional variational data assimilation scheme , 2011, 2011 International Conference on Multimedia Technology.

[41]  Marc Bocquet,et al.  Joint state and parameter estimation with an iterative ensemble Kalman smoother , 2013 .

[42]  Hans Wackernagel,et al.  Geir Evensen: Data Assimilation—The Ensemble Kalman Filter, 2nd edn , 2010 .

[43]  Martin Vejmelka,et al.  Spectral diagonal ensemble Kalman filters , 2014, 1501.00219.

[44]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[45]  K. Brusdala,et al.  A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems , 2003 .

[46]  Mark D. Butala A localized ensemble Kalman smoother , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[47]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[48]  D. Oliver,et al.  Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification , 2013, Computational Geosciences.

[49]  Y. Trémolet Model‐error estimation in 4D‐Var , 2007 .

[50]  Neill E. Bowler,et al.  Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NWP , 2015 .

[51]  Serge Gratton,et al.  Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems , 2013, Comput. Optim. Appl..

[52]  Minjeong Kim,et al.  Data assimilation for wildland fires , 2007, IEEE Control Systems.

[53]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[54]  Marc Bocquet,et al.  An iterative ensemble Kalman smoother , 2014 .

[55]  Pierre Brasseur,et al.  A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation , 2014 .

[56]  Jean-Thomas Camino,et al.  4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations , 2014 .

[57]  Stephen J. Wright,et al.  An inexact Levenberg-Marquardt method for large sparse nonlinear least squres , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[58]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[59]  M. R. Osborne Nonlinear least squares — the Levenberg algorithm revisited , 1976, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.