Recent progress in development and nonlinear optical device application of optical fibers incorporated with noble metal nanoparticles

Recent progress in development and nonlinear optical device application of germano-silicate optical fibers incorporated with noble metal nanoparticles are presented. Novel macro-optical properties, such as linear absorption, resonant optical nonlinearity, and optical limiting properties of the fibers fabricated by modified chemical vapor deposition and solution doping techniques are experimentally and theoretically demonstrated based on surface plasmon resonance effect and nonlinear confinement of the noble metal nanoparticles. Applications of the fibers for all-optical signal gating with the cascaded long period gratings and for a new method to determine the third-order susceptibility of optical fibers are discussed.

[1]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[2]  A. Ikushima,et al.  Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles , 1994 .

[3]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[4]  Dong Hoon Son,et al.  Effect of aluminum on the formation of silver metal quantum dots in sol-gel derived alumino-silicate glass film. , 2006, Journal of nanoscience and nanotechnology.

[5]  X. Gu,et al.  Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings. , 1998, Optics letters.

[6]  P Magudapathy,et al.  Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study , 2003 .

[7]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[8]  Aoxiang Lin,et al.  Au-nanoparticle-incorporated germano-silicate glass fiber with high resonant nonlinearity , 2007 .

[9]  Werner J. Blau,et al.  Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles , 2001 .

[10]  M. J. Weber,et al.  Nonlinear Refractive Index of Glasses and Crystals , 1978 .

[11]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[12]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[13]  K. Taira,et al.  Highly-nonlinear bismuth oxide-based glass fibers for all-optical signal processing , 2002, Optical Fiber Communication Conference and Exhibit.

[14]  G I Stegeman,et al.  Two-photon absorption as a limitation to all-optical switching. , 1989, Optics letters.

[15]  E. Borsella,et al.  Measurements of the Third-Order Nonlinear Susceptibility of Ag Nanoparticles in glass matrices in a Wide Spectral Range , 1998 .

[16]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[17]  K. C. Byron,et al.  Kerr modulation of signals at 1.3 and 1.5 μm in polarisation-maintaining fibres pumped at 1.06 μm , 1987 .

[18]  H. Liu,et al.  Nonlinear optical dynamics of glass-embedded silver nanoparticles , 2006 .

[19]  R. A. Betts,et al.  Nonlinear refractive index in erbium doped optical fiber: Theory and experiment , 1991 .

[20]  U C Paek,et al.  Resonant optical nonlinearity measurement of Yb(3+) / Al(3+) codoped optical fibers by use of a long-period fiber grating pair. , 2002, Optics letters.

[21]  John W. Arkwright,et al.  Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber , 1998 .

[22]  Mansoor Sheik-Bahae,et al.  Eclipsing Z-scan measurement of λ/10 4 wave-front distortion , 1994 .

[23]  Maurizio Ferrari,et al.  Terbium(III) doped silica-xerogels : effect of aluminium(III) co-doping , 1999 .

[24]  Aoxiang Lin,et al.  Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber. , 2007, Optics express.

[25]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[26]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[27]  Arao Nakamura,et al.  Subpicosecond time response of third‐order optical nonlinearity of small copper particles in glass , 1994 .

[28]  B. Y. Kim,et al.  Optical Kerr switch using elliptical-core two-mode fiber. , 1988, Optics letters.

[29]  Aoxiang Lin,et al.  Visible Optical Limiting Property of Germano-Silicate Glass Fibers with Au Nanoparticles Incorporated , 2008 .

[30]  Aoxiang Lin,et al.  Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity , 2008 .

[31]  Han-Ping D. Shieh,et al.  Fabrication and nonlinear optical properties of nanoparticle silver oxide films , 2003 .

[32]  Keith J. Blow,et al.  Ultrafast Fiber Switching Devices and Systems , 1993 .

[33]  Pak Lim Chu Nonlinear effects in rare-earth-doped fibers and waveguides , 1997, Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting.

[34]  Jae-Won Song,et al.  Thermooptically tunable side-polished fiber comb filter and its application , 2002 .

[35]  Dae Seung Moon,et al.  Cu(2+)-doped germano-silicate glass fiber with high resonant nonlinearity. , 2007, Optics express.

[36]  Panagiotis Lianos,et al.  Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films , 2000 .

[37]  Hideyuki Inouye,et al.  Preparation and femtosecond non-linear optical properties of Ag/SiO2 composite thin films , 2003 .

[38]  Byoungho Lee,et al.  All-optical signal gating in cascaded long-period fiber gratings , 2000, Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505).

[39]  David N. Payne,et al.  Solution-doping technique for fabrication of rare-earth-doped optical fibres , 1987 .

[40]  Heike Ebendorff-Heidepriem,et al.  Bismuth glass holey fibers with high nonlinearity. , 2004, Optics express.

[41]  François Hache,et al.  The optical kerr effect in small metal particles and metal colloids: The case of gold , 1988 .

[42]  Ali Adibi,et al.  Role of cerium in lithium niobate for holographic recording , 2000 .

[43]  K. Taira,et al.  Bismuth-based optical fiber with nonlinear coefficient of 1360 W'1km'1 , 2004 .

[44]  Arao Nakamura,et al.  Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites , 2003 .