Linear-Time Reconstruction of Delaunay Triangulations with Applications

Many of the computational geometers' favorite data structures are planar graphs, canonically determined by a set of geometric data, that take Θ(n log n) time to compute. Examples include 2-d Delaunay triangulation, trapezoidations of segments, and constrained Voronoi diagrams, and 3-d convex hulls. Given such a structure, one can determine a permutation of the data in O(n) time such that the data structure can be reconstructed from the permuted data in O(n) time by a simple incremental algorithm.

[1]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[2]  Robin Thomas,et al.  Efficiently four-coloring planar graphs , 1996, STOC '96.

[3]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[4]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[5]  Mark de Berg,et al.  Simple traversal of a subdivision without extra storage , 1996, SCG '96.

[6]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[7]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[8]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[9]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[10]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[11]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[12]  Michael T. Goodrich,et al.  Dynamic trees and dynamic point location , 1991, STOC '91.

[13]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrainted Voronoi Diagram of a Simple Polygon in Linear-Time (Extended Abstract) , 1995, ESA.

[14]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[15]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[16]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[17]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[18]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[21]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[22]  Norishige Chiba,et al.  A Linear 5-Coloring Algorithm of Planar Graphs , 1981, J. Algorithms.

[23]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[24]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .