A biomimetic zinc activated ion channel.

A novel biomimetic zinc activated ion channel was prepared by incorporating a zinc responsive peptide, zinc finger, into a single polymeric nanochannel.

[1]  D. Tierney,et al.  Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. , 2007, Journal of the American Chemical Society.

[2]  S. Howorka,et al.  Protein components for nanodevices. , 2005, Current opinion in chemical biology.

[3]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[4]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[5]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[6]  Jeremy S. Lee,et al.  Nanopore analysis of the folding of zinc fingers. , 2008, Small.

[7]  C. Toniolo,et al.  Zinc(II) as an allosteric regulator of liposomal membrane permeability induced by synthetic template-assembled tripodal polypeptides. , 2002, Chemistry.

[8]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[9]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[10]  Jian Zhang,et al.  Metal-coupled folding of Cys2His2 zinc-finger. , 2008, Journal of the American Chemical Society.

[11]  Yukio Sugiura,et al.  Designer zinc finger proteins: tools for creating artificial DNA-binding functional proteins. , 2006, Accounts of chemical research.

[12]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[13]  Christopher Miller,et al.  Ionic channels of excitable membranes. Second edition By Bertil Hille. Sunderland, Massachusetts: Sinauer. (1991). 607 pp. $46.95 , 1992, Cell.

[14]  J. Berg Zinc finger domains: hypotheses and current knowledge. , 1990, Annual review of biophysics and biophysical chemistry.

[15]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[16]  L. Hood,et al.  Zinc-dependent structure of a single-finger domain of yeast ADR1. , 1988, Science.

[17]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[18]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[19]  Reinhard Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[20]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[21]  Weihong Tan,et al.  DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity , 2004, Science.

[22]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[23]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[24]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[25]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[26]  Paul A Davies,et al.  A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+ * , 2003, The Journal of Biological Chemistry.

[27]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.