Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study

<jats:p><jats:fig position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" orientation="portrait" mime-subtype="jpeg" mimetype="image" position="float" xlink:type="simple" xlink:href="S0884291418001632_figAb" /></jats:fig></jats:p>

[1]  Tulus,et al.  Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study , 2018, Journal of Materials Research.

[2]  Christoph J. Brabec,et al.  Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates , 2017 .

[3]  Yang Yang,et al.  Low-bandgap conjugated polymers enabling solution-processable tandem solar cells , 2017 .

[4]  James H. Bannock,et al.  Burn‐in Free Nonfullerene‐Based Organic Solar Cells , 2017 .

[5]  K. Leo,et al.  Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices , 2017 .

[6]  Yun Zhang,et al.  Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. , 2017, Journal of the American Chemical Society.

[7]  Eugene A. Katz,et al.  Light-induced generation of free radicals by fullerene derivatives: an important degradation pathway in organic photovoltaics? , 2017 .

[8]  Jong-Hyun Ahn,et al.  A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier , 2017 .

[9]  Tae Whan Kim,et al.  Transparent high-performance SiOxNy/SiOx barrier films for organic photovoltaic cells with high durability , 2017 .

[10]  S. Forrest,et al.  Outdoor operation of small-molecule organic photovoltaics , 2017 .

[11]  F. Brunetti,et al.  Solvent effects on the morphology and stability of PTB7:PCBM based solar cells , 2016 .

[12]  Michail J. Beliatis,et al.  Baselines for Lifetime of Organic Solar Cells , 2016 .

[13]  Shiny Nair,et al.  Passivation of organic field effect transistor with photopatterned Parylene to improve environmental stability , 2016 .

[14]  Fujun Zhang,et al.  Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells , 2016, Advanced materials.

[15]  E. Katz,et al.  Assessing the outdoor photochemical stability of conjugated polymers by EPR spectroscopy , 2016 .

[16]  E. Katz,et al.  Efficient solar cells are more stable: The impact of polymer molecular weight on performance of organic photovoltaics , 2016 .

[17]  Pei Cheng,et al.  Stability of organic solar cells: challenges and strategies. , 2016, Chemical Society reviews.

[18]  H. Rubahn,et al.  Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives , 2016 .

[19]  H. Rubahn,et al.  Long-term stabilization of organic solar cells using UV absorbers , 2016 .

[20]  David G Lidzey,et al.  PCDTBT based solar cells: one year of operation under real-world conditions , 2016, Scientific Reports.

[21]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[22]  C. Brabec,et al.  Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability , 2016 .

[23]  A. Donald,et al.  Dependence on material choice of degradation of organic solar cells following exposure to humid air , 2015, Journal of polymer science. Part B, Polymer physics.

[24]  F. Krebs,et al.  Lifetime of Organic Photovoltaics: Status and Predictions , 2016 .

[25]  G. A. dos Reis Benatto,et al.  Printable luminescent down shifter for enhancing efficiency and stability of organic photovoltaics , 2016 .

[26]  Zhe Li,et al.  Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices , 2015, Scientific Reports.

[27]  Frank W. Fecher,et al.  Water Ingress in Encapsulated Inverted Organic Solar Cells: Correlating Infrared Imaging and Photovoltaic Performance , 2015 .

[28]  C. Brabec,et al.  Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance. , 2015, Macromolecular rapid communications.

[29]  A. Donald,et al.  Grain size dependence of degradation of aluminium/calcium cathodes in organic solar cells following exposure to humid air , 2015 .

[30]  Hui Joon Park,et al.  Organic photovoltaic cells: from performance improvement to manufacturing processes. , 2015, Small.

[31]  G. Florides,et al.  Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  P. Troshin,et al.  ESR spectroscopy for monitoring the photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells. , 2015, Chemical communications.

[33]  S. Ponomarenko,et al.  ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. , 2015, Chemical communications.

[34]  M. McGehee,et al.  Minimal Long-Term Intrinsic Degradation Observed in a Polymer Solar Cell Illuminated in an Oxygen-Free Environment , 2015 .

[35]  Hongsuk Suh,et al.  Long-term stable polymer solar cells with significantly reduced burn-in loss , 2014, Nature Communications.

[36]  B. Rand,et al.  Light‐Induced Degradation of Polymer:Fullerene Photovoltaic Devices: An Intrinsic or Material‐Dependent Failure Mechanism? , 2014 .

[37]  H. Hoppe,et al.  Long-term stabilization of organic solar cells using hindered phenols as additives. , 2014, ACS applied materials & interfaces.

[38]  S. Beaupré,et al.  How Photoinduced Crosslinking Under Operating Conditions Can Reduce PCDTBT‐Based Solar Cell Efficiency and then Stabilize It , 2014 .

[39]  Richard L. Thompson,et al.  Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics , 2014, Scientific Reports.

[40]  C. Singh,et al.  Influence of Thermal Annealing on PCDTBT:PCBM Composition Profiles , 2014 .

[41]  Zhiyong Liu,et al.  Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells , 2014 .

[42]  S. Kannappan,et al.  Effects of Organic Solvents for Composite Active Layer of PCDTBT/PC71BM on Characteristics of Organic Solar Cell Devices , 2014 .

[43]  S. Krischok,et al.  Multiple stress degradation analysis of the active layer in organic photovoltaics , 2014 .

[44]  H. Hoppe,et al.  Polymer solar cells with enhanced lifetime by improved electrode stability and sealing , 2013 .

[45]  S. Beaupré,et al.  PCDTBT: en route for low cost plastic solar cells , 2013 .

[46]  J. Garandet,et al.  Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation , 2013 .

[47]  S. Beaupré,et al.  Impact of UV‐Visible Light on the Morphological and Photochemical Behavior of a Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2013 .

[48]  Yingying Fu,et al.  Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures , 2012 .

[49]  Luping Yu,et al.  Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers , 2012 .

[50]  O Ok Park,et al.  Stability comparison: A PCDTBT/PC71BM bulk-heterojunction versus a P3HT/PC71BM bulk-heterojunction , 2012 .

[51]  Tao Wang,et al.  Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends , 2012 .

[52]  A. Salleo,et al.  The Mechanism of Burn‐in Loss in a High Efficiency Polymer Solar Cell , 2012, Advanced materials.

[53]  F. Krebs,et al.  Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules , 2012 .

[54]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[55]  Ye Tao,et al.  Effect of mixed solvents on PCDTBT:PC70BM based solar cells , 2011 .

[56]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[57]  Andrés J. García,et al.  Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics , 2011 .

[58]  Paul Heremans,et al.  Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells , 2011 .

[59]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[60]  A. Heeger,et al.  Semiconducting polymers: the Third Generation. , 2010, Chemical Society reviews.

[61]  D. Ginley,et al.  Impact of contact evolution on the shelf life of organic solar cells , 2009 .

[62]  C. Brabec,et al.  Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance , 2009 .

[63]  C. Sentein,et al.  Time-resolved morphological study of organic thin film solar cells based on calcium/aluminium cathode material , 2008 .

[64]  Jin Young Kim,et al.  Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells , 2007 .

[65]  S. Lenfant,et al.  Study of thin calcium electrode degradation by ion beam analysis , 2006 .

[66]  N. Karst,et al.  On the improvement of the open circuit voltage of plastic solar cells by the presence of a thin aluminium oxide layer at the interface organic/aluminium , 2006 .

[67]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[68]  J. Pflaum,et al.  Effect of Molecular Weight and Annealing of Poly(3‐hexylthiophene)s on the Performance of Organic Field‐Effect Transistors , 2004 .