Recent progress in semiconductor excitable lasers for photonic spike processing

Recently, there has been tremendous interest in excitable optoelectronic devices and in particular excitable semiconductor lasers that could potentially enable unconventional processing approaches beyond conventional binary-logic-based approaches. In parallel, there has been renewed investigation of non-von Neumann architectures driven in part by incipient limitations in aspects of Moore’s law. These neuromorphic architectures attempt to decentralize processing by interweaving interconnection with computing while simultaneously incorporating time-resolved dynamics, loosely classified as spiking (a.k.a. excitability). The rapid and efficient advances in CMOS-compatible photonic interconnect technologies have led to opportunities in optics and photonics for unconventional circuits and systems. Effort in the budding research field of photonic spike processing aims to synergistically integrate the underlying physics of photonics with bio-inspired processing. Lasers operating in the excitable regime are dynamically analogous with the spiking dynamics observed in neuron biophysics but roughly 8 orders of magnitude faster. The field is reaching a critical juncture at which there is a shift from studying single devices to studying an interconnected network of lasers. In this paper, we review the recent research in the information processing abilities of such lasers, dubbed “photonic neurons,” “laser neurons,” or “optical neurons.” An integrated network of such lasers on a chip could potentially grant the capacity for complex, ultrafast categorization and decision making to provide a range of computing and signal processing applications, such as sensing and manipulating the radio frequency spectrum and for hypersonic aircraft control.

[1]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[2]  J. Danckaert,et al.  Multistable and excitable behavior in semiconductor ring lasers with broken Z2-symmetry , 2010 .

[3]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[4]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[5]  Masaya Notomi,et al.  All-optical memory based on injection-locking bistability in photonic crystal lasers. , 2011, Optics express.

[6]  Yue Tian,et al.  Photonic Neuromorphic Signal Processing and Computing , 2014 .

[7]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[8]  Antonio Hurtado,et al.  Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems , 2015, 1507.08176.

[9]  M. J. Adams,et al.  Controlled Single- and Multiple-Pulse Excitability in VCSELs for Novel Spiking Photonic Neurons , 2014, 2014 International Semiconductor Laser Conference.

[10]  Mario Dagenais,et al.  Optical injection induced polarization bistability in vertical‐cavity surface‐emitting lasers , 1993 .

[11]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[12]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[13]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[14]  Neil Mathur,et al.  Nanotechnology: Beyond the silicon roadmap , 2002, Nature.

[15]  D.A.B. Miller Joining optics and electronics for information processing and communication , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[16]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[17]  Fischer,et al.  Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. , 1996, Physical review letters.

[18]  R. Braive,et al.  All-Optical, All-Fibered Ultrafast Switching in 2-D InP-Based Photonic Crystal Nanocavity , 2010, IEEE Photonics Journal.

[19]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[20]  M Radziunas,et al.  Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. , 2001, Physical review letters.

[21]  Salvador Balle,et al.  Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. , 2013, Optics express.

[22]  B. Romeira,et al.  Regenerative memory in time-delayed neuromorphic photonic resonators , 2016, Scientific Reports.

[23]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[24]  P. Bienstman,et al.  Excitation transfer between optically injected microdisk lasers. , 2013, Optics express.

[25]  Hark Hoe Tan,et al.  Electrical isolation of n -type and p -type InP layers by proton bombardment , 2001 .

[26]  Bruno Romeira Dynamics of resonant tunneling diode optoelectronic oscillators , 2012 .

[27]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[28]  Stefania Malaguti,et al.  Self-pulsing driven by two-photon absorption in semiconductor nanocavities , 2011 .

[29]  Paul R. Prucnal,et al.  Simulations of a graphene excitable laser for spike processing , 2014 .

[30]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[31]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[32]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[33]  M. Mohrle,et al.  Electrically switchable self-pulsations in integratable multisection DFB-lasers , 1996, IEEE Photonics Technology Letters.

[34]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[35]  J. Bowers,et al.  Integrated Microwave Photonic Filter on a Hybrid Silicon Platform , 2010, IEEE Transactions on Microwave Theory and Techniques.

[36]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001, Physical review letters.

[37]  P. Monnier,et al.  Fast thermo-optical excitability in a two-dimensional photonic crystal. , 2006, Physical review letters.

[38]  H.J. De Los Santos,et al.  Physics-based RTD current-voltage equation , 1996, IEEE Electron Device Letters.

[39]  Masaya Notomi,et al.  All-optical switches on a silicon chip realized using photonic crystal nanocavities , 2005 .

[40]  Y Li,et al.  VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects. , 1996, Applied optics.

[41]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[42]  D Van Thourhout,et al.  Unidirectional III-V microdisk lasers heterogeneously integrated on SOI. , 2013, Optics express.

[43]  Paul R. Prucnal,et al.  An integrated analog O/E/O link for multi-channel laser neurons , 2016 .

[44]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  J. Danckaert,et al.  Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization , 2010, 1108.3704.

[46]  Alfred Forchel,et al.  Quantum dot micropillars , 2010 .

[47]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[48]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[49]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[50]  Minoru Yamada,et al.  A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers , 1993 .

[51]  D Goulding,et al.  Excitability in a quantum dot semiconductor laser with optical injection. , 2007, Physical review letters.

[52]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[53]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[54]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[55]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[56]  Jan Sieber,et al.  Travelling Wave Equations for Semiconductor Lasers with Gain Dispersion , 2005 .

[57]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[58]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[59]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[60]  Govind P. Agrawal,et al.  Laser instabilities: a modern perspective , 1998 .

[61]  Tze Chien Sum,et al.  The Physics of ultrafast saturable absorption in graphene. , 2010, Optics express.

[62]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[63]  Cristina Masoller,et al.  Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. , 2015, Optics express.

[64]  B. Ortega,et al.  A tutorial on microwave photonic filters , 2006, Journal of Lightwave Technology.

[65]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[66]  Thomas Ferreira de Lima,et al.  Multi-channel control for microring weight banks. , 2016, Optics express.

[67]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[68]  Pinaki Mazumder,et al.  Tunneling-Based Cellular Nonlinear Network Architectures for Image Processing , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[69]  M. Sorel,et al.  Alternate oscillations in semiconductor ring lasers. , 2002, Optics letters.

[70]  Ying-Cheng Lai,et al.  Chaotic transitions and low-frequency fluctuations in semiconductor lasers with optical feedback , 2000 .

[71]  Daan Lenstra,et al.  Semiconductor lasers with optical injection and feedback , 1995 .

[72]  Thomas J. Naughton,et al.  Photonic neural networks , 2012, Nature Physics.

[73]  Jorge R. Tredicce,et al.  Optical excitable waves , 1998 .

[74]  Sven Höfling,et al.  Light-induced stochastic resonance in a nanoscale resonant-tunneling diode , 2011 .

[75]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[76]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[77]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[78]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[79]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[80]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[81]  Daan Lenstra,et al.  Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .

[82]  Hans Wenzel,et al.  Mechanisms of fast self pulsations in two-section DFB lasers , 1996 .

[83]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[84]  Rüdiger Paschotta,et al.  Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers , 2001 .

[85]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[86]  Christian Otto Dynamics of Quantum Dot Lasers , 2014 .

[87]  Pere Colet,et al.  Excitability mediated by localized structures , 2005 .

[88]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[89]  Paul R. Prucnal,et al.  Spike processing with a graphene excitable laser , 2016, Scientific Reports.

[90]  Eugene M. Izhikevich,et al.  Resonate-and-fire neurons , 2001, Neural Networks.

[91]  Victor Grigoriev,et al.  Resonant self-pulsations in coupled nonlinear microcavities , 2011, 1102.5032.

[92]  Martin Fiers,et al.  Self-pulsing and chaos in short chains of coupled nonlinear microcavities , 2009 .

[93]  Daan Lenstra,et al.  Multipulse excitability in a semiconductor laser with optical injection. , 2002, Physical review letters.

[94]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[95]  Yue Tian,et al.  Signal feature recognition based on lightwave neuromorphic signal processing. , 2011, Optics letters.

[96]  Salvador Balle,et al.  Excitable optical waves in semiconductor microcavities. , 2005, Physical review letters.

[97]  Paul R. Prucnal,et al.  Photonic spike processing: ultrafast laser neurons and an integrated photonic network , 2014, ArXiv.

[98]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[99]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[100]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[101]  M. J. Adams,et al.  Dynamics of Polarized Optical Injection in 1550-nm VCSELs: Theory and Experiments , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[102]  B Kelleher,et al.  Excitation regeneration in delay-coupled oscillators. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Salvador Balle,et al.  Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[105]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[106]  B Krauskopf,et al.  Excitability and coherence resonance in lasers with saturable absorber. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[108]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[109]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[110]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[111]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[112]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[113]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[114]  S. L. Danielsen,et al.  All-optical wavelength conversion by semiconductor optical amplifiers , 1996 .

[115]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[116]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[117]  M. Asada,et al.  High-Power Operation of Terahertz Oscillators With Resonant Tunneling Diodes Using Impedance-Matched Antennas and Array Configuration , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[118]  Sylvain Barbay,et al.  Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber , 2010 .

[119]  R. Braive,et al.  Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity. , 2009, Optics express.

[120]  Paul R. Prucnal,et al.  Microring Weight Banks , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[121]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[122]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[123]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[124]  J. Danckaert,et al.  Optical injection in semiconductor ring lasers , 2009 .

[125]  Yong-Hee Lee,et al.  All-optical bistable switching in curved microfiber-coupled photonic crystal resonators , 2007 .

[126]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001 .

[127]  Johannes Schemmel,et al.  Six Networks on a Universal Neuromorphic Computing Substrate , 2012, Front. Neurosci..

[128]  F. Koyama Recent Advances of VCSEL Photonics , 2006 .

[129]  Sylvain Barbay,et al.  Excitability in a semiconductor laser with saturable absorber. , 2011, Optics letters.

[130]  Paul R. Prucnal,et al.  Continuous Calibration of Microring Weights for Analog Optical Networks , 2016, IEEE Photonics Technology Letters.

[131]  K. Shore,et al.  Optical Injection-Induced Polarization Switching Dynamics in 1.5-$\mu$m Wavelength Single-Mode Vertical-Cavity Surface-Emitting Lasers , 2008, IEEE Photonics Technology Letters.

[132]  B Kelleher,et al.  Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  Mindaugas Radziunas,et al.  Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers , 2001 .

[134]  Hugo Thienpont,et al.  Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection , 2006 .

[135]  Di Liang,et al.  Hybrid Integrated Platforms for Silicon Photonics , 2010, Materials.

[136]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[137]  Giacomelli,et al.  Experimental evidence of coherence resonance in an optical system , 2000, Physical review letters.

[138]  L. Gelens,et al.  Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide , 2013 .

[139]  Guillaume Huyet,et al.  Sensitivity of quantum-dot semiconductor lasers to optical feedback , 2004 .

[140]  R Kuszelewicz,et al.  Temporal summation in a neuromimetic micropillar laser. , 2015, Optics letters.

[141]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[142]  J. Javaloyes,et al.  Topological solitons as addressable phase bits in a driven laser , 2014, Nature Communications.

[143]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[144]  Paul R Prucnal,et al.  SIMPEL: circuit model for photonic spike processing laser neurons. , 2014, Optics express.

[145]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[146]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[147]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[148]  H. I. Cantu,et al.  Delayed Feedback Dynamics of Liénard-Type Resonant Tunneling-Photo-Detector Optoelectronic Oscillators , 2013, IEEE Journal of Quantum Electronics.

[149]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  R Kuszelewicz,et al.  Relative refractory period in an excitable semiconductor laser. , 2014, Physical review letters.

[151]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[152]  B Kelleher,et al.  Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser. , 2014, Optics letters.

[153]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[154]  D. Miller,et al.  The role of optics in computing , 2010 .

[155]  M. Mohrle,et al.  Gigahertz self-pulsation in 1.5 mu m wavelength multisection DFB lasers , 1992, IEEE Photonics Technology Letters.

[156]  Miguel A. Larotonda,et al.  Experimental investigation on excitability in a laser with a saturable absorber , 2002 .

[157]  Paul R Prucnal,et al.  Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. , 2011, Optics express.

[158]  R. Baets,et al.  Design and Optimization of Electrically Injected InP-Based Microdisk Lasers Integrated on and Coupled to a SOI Waveguide Circuit , 2008, Journal of Lightwave Technology.

[159]  Thomas Ferreira de Lima,et al.  Excitable laser processing network node in hybrid silicon: analysis and simulation. , 2015, Optics express.

[160]  Alejandro M. Yacomotti,et al.  All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal , 2006 .

[161]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[162]  Joni Dambre,et al.  Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. , 2013, Optics express.

[163]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[164]  Michael L Davenport,et al.  Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. , 2014, Optics express.

[165]  A. Aertsen,et al.  Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding , 2010, Nature Reviews Neuroscience.

[166]  Cristina Masoller,et al.  Unveiling the complex organization of recurrent patterns in spiking dynamical systems , 2014, Scientific Reports.

[167]  Paul R Prucnal,et al.  A high performance photonic pulse processing device. , 2009, Optics express.

[168]  Debashis Sahoo,et al.  Discriminating cellular heterogeneity using microwell-based RNA cytometry , 2014, Nature Communications.

[169]  Dharmendra S. Modha,et al.  Cognitive Computing , 2011, Informatik-Spektrum.

[170]  L. Pesquera,et al.  Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs). , 2010, Optics express.

[171]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[172]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[173]  M. Notomi,et al.  Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. , 2007, Optics express.

[174]  K. Engelborghs,et al.  Interacting pairs of periodic solutions lead to tori in lasers subject to delayed feedback. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[175]  R. Avo,et al.  Stochastic induced dynamics in neuromorphic optoelectronic oscillators , 2014 .

[176]  W. Freude,et al.  Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding , 2015, Journal of Lightwave Technology.

[177]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[178]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[179]  Oskar Painter,et al.  Coherent optical wavelength conversion via cavity optomechanics , 2012, Nature Communications.

[180]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[181]  Christian Seassal,et al.  Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal , 2004 .

[182]  I. Sagnes,et al.  Excitability and self-pulsing in a photonic crystal nanocavity , 2012 .

[183]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[184]  Sander M. Bohte,et al.  Computing with Spiking Neuron Networks , 2012, Handbook of Natural Computing.

[185]  M Giudici,et al.  Control of excitable pulses in an injection-locked semiconductor laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[186]  Antonio Hurtado,et al.  Optical neuron using polarisation switching in a 1550nm-VCSEL. , 2010, Optics express.

[187]  Gabriel B. Mindlin,et al.  Interspike Time Distribution in Noise Driven Excitable Systems , 1999 .

[188]  Giovanni Giacomelli,et al.  Andronov bifurcation and excitability in semiconductor lasers with optical feedback , 1997 .

[189]  H. Lin,et al.  VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings , 2004 .

[190]  B. Schrauwen,et al.  Cascadable excitability in microrings. , 2012, Optics express.

[191]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[192]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: Preface , 1995 .

[193]  Gregory Cohen,et al.  Synthesis of neural networks for spatio-temporal spike pattern recognition and processing , 2013, Front. Neurosci..

[194]  J. Bowers,et al.  Hybrid silicon evanescent devices , 2007 .