Thermodynamics and kinetics of a folded-folded' transition at valine-9 of a GCN4-like leucine zipper.

[1]  H. Prosper Bayesian Analysis , 2000, hep-ph/0006356.

[2]  D. Laurents,et al.  Protein folding: matching theory and experiment. , 1998, Biophysical journal.

[3]  V. Pande,et al.  On the transition coordinate for protein folding , 1998 .

[4]  G. L. Bretthorst,et al.  Site-specific thermodynamics and kinetics of a coiled-coil transition by spin inversion transfer NMR. , 1998, Biophysical journal.

[5]  J. Onuchic,et al.  Folding funnels and frustration in off-lattice minimalist protein landscapes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Fersht,et al.  The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding. , 1998, Journal of molecular biology.

[7]  K. Dill,et al.  Protein folding in the landscape perspective: Chevron plots and non‐arrhenius kinetics , 1998, Proteins.

[8]  A. Holtzer,et al.  Thermal unfolding in a GCN4-like leucine zipper: 13C alpha NMR chemical shifts and local unfolding curves. , 1997, Biophysical journal.

[9]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[10]  A. Fersht,et al.  Titration properties and thermodynamics of the transition state for folding: comparison of two-state and multi-state folding pathways. , 1996, Journal of molecular biology.

[11]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[12]  Observation via one-dimensional 13Calpha NMR of local conformational substates in thermal unfolding equilibria of a synthetic analog of the GCN4 leucine zipper. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper , 1995, Protein science : a publication of the Protein Society.

[14]  Structural stability of short subsequences of the tropomyosin chain , 1995, Biopolymers.

[15]  M. Rudin,et al.  Measurement of Reaction Rates In Vivo Using Magnetization Transfer Techniques , 1992 .

[16]  P. S. Kim,et al.  Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. , 1991, Biochemistry.

[17]  P. S. Kim,et al.  X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. , 1991, Science.

[18]  G. L. Bretthorst Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .

[19]  G. Larry Bretthorst,et al.  Bayesian analysis. II. Signal detection and model selection , 1990 .

[20]  G. Larry Bretthorst,et al.  Bayesian analysis. III. Applications to NMR signal detection, model selection, and parameter estimation , 1990 .

[21]  P. S. Kim,et al.  Evidence that the leucine zipper is a coiled coil. , 1989, Science.

[22]  R. Levine,et al.  Molecular Reaction Dynamics and Chemical Reactivity , 1987 .

[23]  A. Mclachlan,et al.  Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. , 1975, Journal of molecular biology.

[24]  S. Benson,et al.  Chemical Kinetics , 2021, Fuel Effects on Operability of Aircraft Gas Turbine Combustors.

[25]  H. Mcconnell Reaction Rates by Nuclear Magnetic Resonance , 1958 .

[26]  Francis Crick,et al.  The Fourier transform of a coiled-coil , 1953 .

[27]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .