Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy

[1]  B. Seitz,et al.  Impact of fibronectin on surface properties of intraocular lenses , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[2]  Riccardo Barberi,et al.  Analysis of intraocular lens surface adhesiveness by atomic force microscopy , 2009, Journal of cataract and refractive surgery.

[3]  A. Brézin,et al.  Objective assessment of inflammation after cataract surgery: Comparison of 3 similar intraocular lens models , 2009, Journal of cataract and refractive surgery.

[4]  L. Werner,et al.  Evaluating and defining the sharpness of intraocular lenses: Microedge structure of commercially available square‐edged hydrophilic intraocular lenses , 2009, Journal of cataract and refractive surgery.

[5]  Xiaoming Chen,et al.  Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification. , 2008, Ophthalmology.

[6]  L. Werner,et al.  Evaluating and defining the sharpness of intraocular lenses: Microedge structure of commercially available square‐edged hydrophobic lenses , 2008, Journal of cataract and refractive surgery.

[7]  S. Kobayakawa,et al.  The Relationship between the Adhesion Characteristics of Acrylic Intraocular Lens Materials and Posterior Capsule Opacification , 2007, Ophthalmic Research.

[8]  M. Batterbury,et al.  Modification of the surface properties of a lens material to influence posterior capsular opacification , 2006, Clinical & experimental ophthalmology.

[9]  M. Lombardo,et al.  Analysis of intraocular lens surface properties with atomic force microscopy , 2006, Journal of cataract and refractive surgery.

[10]  M. Tetz,et al.  Evaluating and defining the sharpness of intraocular lenses: Part 1: Influence of optic design on the growth of the lens epithelial cells in vitro , 2005, Journal of cataract and refractive surgery.

[11]  H. Gada,et al.  Nd:YAG capsulotomy rates after use of the AcrySof acrylic three piece and one piece intraocular lenses , 2005, British Journal of Ophthalmology.

[12]  M. Usui,et al.  Cell adhesion to acrylic intraocular lens associated with lens surface properties , 2005, Journal of cataract and refractive surgery.

[13]  S. Sacu,et al.  Long‐term effect of optic edge design in an acrylic intraocular lens on posterior capsule opacification , 2005, Journal of cataract and refractive surgery.

[14]  O. Nishi,et al.  Effect of intraocular lenses on preventing posterior capsule opacification: Design versus material , 2004, Journal of cataract and refractive surgery.

[15]  T. Oshika,et al.  A prospective, randomised comparison of single and three piece acrylic foldable intraocular lenses , 2004, British Journal of Ophthalmology.

[16]  S. Saika Relationship between posterior capsule opacification and intraocular lens biocompatibility , 2004, Progress in Retinal and Eye Research.

[17]  T. Pakula,et al.  Material Properties of Various Intraocular Lenses in an Experimental Study , 2003, Ophthalmologica.

[18]  G. Lang,et al.  Adherence and viability of porcine lens epithelial cells on three different IOL materials in vitro , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[19]  D. Apple,et al.  Implantation of a single‐piece, hydrophilic, acrylic, minus‐power foldable posterior chamber intraocular lens in a rabbit model: Clinicopathologic study of posterior capsule opacification , 2003, Journal of cataract and refractive surgery.

[20]  C. Zetterström,et al.  Posterior capsule opacification: Comparison of 3 intraocular lenses of different materials and design , 2003, Journal of cataract and refractive surgery.

[21]  J. Marshall,et al.  In vitro model for the study of human posterior capsule opacification , 2003, Journal of cataract and refractive surgery.

[22]  T. Nagamoto,et al.  Inhibition of lens epithelial cell migration at the intraocular lens optic edge: Role of capsule bending and contact pressure , 2003, Journal of cataract and refractive surgery.

[23]  G. Auffarth,et al.  Quantification of posterior capsule opacification with round and sharp edge intraocular lenses. , 2003, Ophthalmology.

[24]  Masahiko Usui,et al.  Surface roughness of intraocular lenses and inflammatory cell adhesion to lens surfaces , 2003, Journal of cataract and refractive surgery.

[25]  S. Arthur,et al.  Scanning electron microscopic and histologic evaluation of the AcrySof SA30AL acrylic intraocular lens: Manufacturing quality and morphology in the capsular bag , 2003, Journal of cataract and refractive surgery.

[26]  J. Davison Clinical performance of Alcon SA30AL and SA60AT single‐piece acrylic intraocular lenses , 2002, Journal of cataract and refractive surgery.

[27]  Michael Amon,et al.  Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses , 2002, Journal of cataract and refractive surgery.

[28]  Y. Ohnishi,et al.  Evaluation of cellular adhesions on silicone and poly(methyl methacrylate) intraocular lenses in monkey eyes: An electron microscopic study , 2001, Journal of cataract and refractive surgery.

[29]  N. Pfeiffer,et al.  Physicochemical Surface Properties of Various Intraocular Lenses , 2001, Ophthalmic Research.

[30]  A. Kruger,et al.  Lens epithelial cell outgrowth on 3 types of intraocular lenses , 2001, Journal of cataract and refractive surgery.

[31]  A. Kruger,et al.  Cellular reaction on the anterior surface of 4 types of intraocular lenses , 2001, Journal of cataract and refractive surgery.

[32]  T. Kohnen,et al.  Scanning electron microscopic characteristics of phakic intraocular lenses. , 2000, Ophthalmology.

[33]  K. Nakamae,et al.  Optical and atomic force microscopy of an explanted AcrySof intraocular lens with glistenings , 2000, Journal of cataract and refractive surgery.

[34]  P. Versura,et al.  Adhesion mechanisms of human lens epithelial cells on 4 intraocular lens materials. , 1999, Journal of cataract and refractive surgery.

[35]  T. Oshika,et al.  Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study , 1998, The British journal of ophthalmology.

[36]  C. Cunanan,et al.  Contact‐angle analysis of intraocular lenses , 1998, Journal of cataract and refractive surgery.

[37]  S. Barman,et al.  Relationship between intraocular lens biomaterials and posterior capsule opacification , 1998, Journal of cataract and refractive surgery.

[38]  G Duncan,et al.  A study of human lens cell growth in vitro. A model for posterior capsule opacification. , 1996, Investigative ophthalmology & visual science.

[39]  O. Findl,et al.  Interventions for preventing posterior capsule opacification. , 2007, The Cochrane database of systematic reviews.

[40]  S. Sacu,et al.  Effect of optic material on posterior capsule opacification in intraocular lenses with sharp-edge optics: randomized clinical trial. , 2005, Ophthalmology.

[41]  D. Koch,et al.  Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses , 1996, Journal of cataract and refractive surgery.