Polyethylenimine-CO2 adduct-stabilized vaterite hydrocolloidal particles

[1]  Mengqing Xu,et al.  Activation of TRPV1 by capsaicin-loaded CaCO3 nanoparticle for tumor-specific therapy. , 2022, Biomaterials.

[2]  Hong Peng,et al.  Nanoemulsion assembly toward vaterite mesoporous CaCO3 for high-efficient uranium extraction from seawater. , 2022, Journal of hazardous materials.

[3]  M. Antipina,et al.  Calcium carbonate vaterite particles for drug delivery: Advances and challenges , 2022, Materials today. Advances.

[4]  E. Dmitrienko,et al.  Designing pH-Dependent Systems Based on Nanoscale Calcium Carbonate for the Delivery of an Antitumor Drug , 2021, Nanomaterials.

[5]  M. Pekař,et al.  Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. , 2021, Journal of materials chemistry. B.

[6]  D. Voronin,et al.  Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From submicron to Giant , 2021 .

[7]  R. Luque,et al.  Solventless Amide Synthesis Catalyzed by Biogenic CaCO3 Materials , 2020 .

[8]  J. Oh,et al.  Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery , 2020 .

[9]  D. Voronin,et al.  Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose , 2020, New Journal of Chemistry.

[10]  Xingyi Xie,et al.  CO2-releasing blowing agents from modified polyethylenimines slightly consume isocyanate groups while foaming polyurethanes , 2020 .

[11]  S. Weiner,et al.  A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate , 2019, Science.

[12]  B. Ercan,et al.  Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles , 2018, Powder Technology.

[13]  Yaning Wang,et al.  Polyurethane foaming with engineered CO2-releasing nanoparticles: From the thickening effect to the industrial applications of the blowing agents , 2018 .

[14]  Yugang Wang,et al.  Exploration of Antigen Induced CaCO3 Nanoparticles for Therapeutic Vaccine. , 2018, Small.

[15]  A. Chaka Ab Initio Thermodynamics of Hydrated Calcium Carbonates and Calcium Analogues of Magnesium Carbonates: Implications for Carbonate Crystallization Pathways , 2018 .

[16]  G. Olah,et al.  Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine , 2017 .

[17]  Youqing Shen,et al.  Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization , 2017, Advanced materials.

[18]  Liangzhu Feng,et al.  CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. , 2016, Biomaterials.

[19]  Zhiyuan Liu,et al.  In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property. , 2016, Materials science & engineering. C, Materials for biological applications.

[20]  Bo Guo,et al.  Controllable Synthesis of Various CaCO3 Morphologies Based on a CCUS Idea , 2016 .

[21]  M. Antipina,et al.  Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles , 2016 .

[22]  Haihui Wang,et al.  Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation , 2015 .

[23]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[24]  Ick Chan Kwon,et al.  pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. , 2015, ACS nano.

[25]  Xingyi Xie,et al.  Carbon dioxide adduct from polypropylene glycol grafted polyethyleneimine as a climate-friendly blowing agent for polyurethane foams , 2014 .

[26]  M. Antipina,et al.  CaCO₃ vaterite microparticles for biomedical and personal care applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[27]  V. Pareek,et al.  Synthesis of micro and nano-sized calcium carbonate particles and their applications , 2014 .

[28]  Jinhua Jiang,et al.  Synthesis of template-free hollow vaterite CaCO3 microspheres in the H2O/EG system , 2013 .

[29]  Leaf Huang,et al.  Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. , 2013, Cancer letters.

[30]  Pieter Bots,et al.  Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC) , 2012 .

[31]  R. Antolini,et al.  Sub-micrometer vaterite containers: synthesis, substance loading, and release. , 2012, Angewandte Chemie.

[32]  Samuel Shaw,et al.  The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. , 2011, Nanoscale.

[33]  R. Zhuo,et al.  Calcium Carbonate/Carboxymethyl Chitosan Hybrid Microspheres and Nanospheres for Drug Delivery , 2010 .

[34]  Chan Beum Park,et al.  Dopamine-induced mineralization of calcium carbonate vaterite microspheres. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  Halina Rubinsztein-Dunlop,et al.  Synthesis and surface modification of birefringent vaterite microspheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[36]  M. Kitamura Strategy for control of crystallization of polymorphs , 2009 .

[37]  T. McLeish,et al.  Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. , 2008, Journal of the American Chemical Society.

[38]  L. Brečević,et al.  On Calcium Carbonates: From Fundamental Research to Application , 2007 .

[39]  M. Antonietti,et al.  Uniform Hexagonal Plates of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization , 2006 .

[40]  Kwan Kim,et al.  Controlled growth of calcium carbonate by poly(ethylenimine) at the air/water interface. , 2004, Chemical communications.

[41]  James J. De Yoreo,et al.  Principles of crystal nucleation and growth , 2003 .

[42]  E. Wagner,et al.  Design and gene delivery activity of modified polyethylenimines. , 2001, Advanced drug delivery reviews.

[43]  Y. Chujo,et al.  Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates , 2001 .

[44]  M. Kitamura Crystallization and Transformation Mechanism of Calcium Carbonate Polymorphs and the Effect of Magnesium Ion. , 2001, Journal of colloid and interface science.

[45]  S. Mahapatra,et al.  Aragonite crystals with unconventional morphologies , 1999 .

[46]  Petros G. Koutsoukos,et al.  Kinetics of Precipitation of Calcium Carbonate in Alkaline pH at Constant Supersaturation. Spontaneous and Seeded Growth , 1998 .

[47]  P. Low,et al.  Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[48]  M. Antonietti,et al.  Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers , 1998 .

[49]  C. Y. Tai,et al.  Nucleation, agglomeration and crystal morphology of calcium carbonate , 1995 .

[50]  Takeshi Ogino,et al.  The formation and transformation mechanism of calcium carbonate in water , 1987 .