On double cyclic codes over Z4

Let $R=\mathbb{Z}_4$ be the integer ring mod $4$. A double cyclic code of length $(r,s)$ over $R$ is a set that can be partitioned into two parts that any cyclic shift of the coordinates of both parts leaves invariant the code. These codes can be viewed as $R[x]$-submodules of $R[x]/(x^r-1)\times R[x]/(x^s-1)$. In this paper, we determine the generator polynomials of this family of codes as $R[x]$-submodules of $R[x]/(x^r-1)\times R[x]/(x^s-1)$. Further, we also give the minimal generating sets of this family of codes as $R$-submodules of $R[x]/(x^r-1)\times R[x]/(x^s-1)$. Some optimal or suboptimal nonlinear binary codes are obtained from this family of codes. Finally, we determine the relationship of generators between the double cyclic code and its dual.

[1]  M. Esmaeili,et al.  Generalized quasi-cyclic codes: structural properties and code construction , 2009, Applicable Algebra in Engineering, Communication and Computing.

[2]  Jaume Pujol,et al.  Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.

[3]  Josep Rifà,et al.  [FORMULA] -linear codes: generator matrices and duality , 2010 .

[4]  Fangwei Fu,et al.  Some Results on Generalized Quasi-Cyclic Codes over 𝔽q+u𝔽q , 2014, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Taher Abualrub,et al.  On ℤ2ℤ2[u]-additive codes , 2015, Int. J. Comput. Math..

[6]  J. Borges,et al.  Z2-double cyclic codes , 2014 .

[7]  I. Siap,et al.  THE STRUCTURE OF GENERALIZED QUASI CYCLIC CODES , 2005 .

[8]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[9]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[10]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[11]  Dwijendra K. Ray-Chaudhuri,et al.  Quasi-cyclic codes over Z4 and some new binary codes , 2002, IEEE Trans. Inf. Theory.

[12]  Taher Abualrub,et al.  BBZ2BBZ4 -Additive Cyclic Codes , 2014, IEEE Trans. Inf. Theory.

[13]  Jaume Pujol,et al.  $${{{\mathbb Z}_2}{{\mathbb Z}_4}}$$ -linear codes: generator matrices and duality , 2007, Des. Codes Cryptogr..

[14]  Yonglin Cao Structural properties and enumeration of 1-generator generalized quasi-cyclic codes , 2011, Des. Codes Cryptogr..

[15]  Yonglin Cao,et al.  Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration , 2011, Applicable Algebra in Engineering, Communication and Computing.

[16]  Irfan Siap,et al.  On ℤprℤps-additive codes , 2015 .

[17]  Jian Gao,et al.  Some Results on Generalized Quasi-Cyclic Codes over 𝔽q+u𝔽q , 2014, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..