Forces in Molecules. II. A Differential Equation for the Potential‐Energy Function
暂无分享,去创建一个
[1] W. L. Clinton. Volume Dependence of the Energy of an Enclosed Quantum Mechanical System , 1962 .
[2] Joseph T. Vanderslice,et al. COMPARATIVE STUDY OF EMPIRICAL INTERNUCLEAR POTENTIAL FUNCTIONS , 1962 .
[3] W. L. Clinton. New Potential Energy Function. II. Theoretical , 1962 .
[4] W. L. Clinton. New Potential Energy Function. I. Empirical , 1962 .
[5] W. L. Clinton. Forces in Molecules. I. Application of the Virial Theorem , 1960 .
[6] W. A. Bingel. United Atom Treatment of the Behavior of Potential Energy Curves of Diatomic Molecules for Small R , 1959 .
[7] W. Brown,et al. Adiabatic second-order energy derivatives in quantum mechanics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] Y. P. Varshni. Comparative Study of Potential Energy Functions for Diatomic Molecules , 1957 .
[9] D. R. Bates,et al. Wave functions of the hydrogen molecular ion , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.