The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique

Various preference-based multi-objective evolutionary algorithms have been developed to help a decision-maker search for his/her preferred solutions to multi-objective problems. In most of the existing approaches the decision-maker preferences are formulated either by mathematical expressions such as the utility function or simply by numerical values such as aspiration levels and weights. However, in some sense a decision-maker may find it easier to specify preferences visually by drawing rather than using numbers. This paper introduces such a method, namely, the brushing technique. Using this technique the decision-maker can specify his/her preferences easily by drawing in the objective space. Combining the brushing technique with one existing algorithm PICEA-g, we present a novel approach named iPICEA-g for an interactive decision-making. The performance of iPICEA-g is tested on a set of benchmark problems and is shown to be good.

[1]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[2]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[3]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[4]  Kalyanmoy Deb,et al.  Progressively interactive evolutionary multi-objective optimization method using generalized polynomial value functions , 2010, IEEE Congress on Evolutionary Computation.

[5]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[6]  Lily Rachmawati,et al.  Incorporation of imprecise goal vectors into evolutionary multi-objective optimization , 2010, IEEE Congress on Evolutionary Computation.

[7]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[8]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[9]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[10]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[11]  Salvatore Greco,et al.  Interactive Evolutionary Multiobjective Optimization using Dominance-based Rough Set Approach , 2010, IEEE Congress on Evolutionary Computation.

[12]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[13]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[14]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[15]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[16]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[17]  Peter J. Fleming,et al.  Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation , 2011, EMO.

[18]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[19]  Jyrki Wallenius,et al.  An early history of multiple criteria decision making , 2016 .

[20]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[21]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[22]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization , 2008, Multiobjective Optimization.

[23]  Jyrki Wallenius,et al.  An Early History of Multiple Criteria Decision Making: AN EARLY HISTORY OF MULTIPLE CRITERIA DECISION MAKING , 2013 .

[24]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[25]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[26]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[27]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[29]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[30]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[31]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[32]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[33]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[34]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[35]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[36]  Peter J. Fleming,et al.  Preference-inspired co-evolutionary algorithm using adaptively generated goal vectors , 2013, 2013 IEEE Congress on Evolutionary Computation.

[37]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[38]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multi-objective Optimization Method Based on Polyhedral Cones , 2010, LION.

[39]  Xiaodong Li,et al.  Integrating user preferences with particle swarms for multi-objective optimization , 2008, GECCO '08.

[40]  Jürgen Branke,et al.  Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression , 2009, EMO.

[41]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[42]  A. Jaszkiewicz,et al.  Interactive multiobjective optimization with the Pareto memetic algorithm , 2007 .

[43]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[44]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[45]  Xiaodong Li,et al.  Using a distance metric to guide PSO algorithms for many-objective optimization , 2009, GECCO.

[46]  Frederico G. Guimarães,et al.  Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms , 2011, EMO.

[47]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[48]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[49]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[50]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[51]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[52]  Murat Köksalan,et al.  Interactive Approaches for Discrete Alternative Multiple Criteria Decision Making with Monotone Utility Functions , 1995 .