Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control.

We use an optimal control protocol to cool one mode of the center-of-mass motion of an optically levitated nanoparticle. The feedback technique relies on exerting a Coulomb force on a charged particle with a pair of electrodes and follows the control law of a linear quadratic regulator, whose gains are optimized by a machine learning algorithm in under 5 s. With a simpler and more robust setup than optical feedback schemes, we achieve a minimum center-of-mass temperature of 5 mK at 3×10^{-7}  mbar and transients 10-600 times faster than cold damping. This cooling technique can be easily extended to 3D cooling and is particularly relevant for studies demanding high repetition rates and force sensing experiments with levitated objects.

[1]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[2]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[3]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[4]  J. Ralph,et al.  Real-Time Kalman Filter: Cooling of an Optically Levitated Nanoparticle , 2017, 1712.07921.

[5]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[6]  Giorgio Gratta,et al.  Search for millicharged particles using optically levitated microspheres. , 2014, Physical review letters.

[7]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[8]  Gerald Hechenblaikner,et al.  Macroscopic quantum resonators (MAQRO) , 2012, 1201.4756.

[9]  R. Quidant,et al.  Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing. , 2018, Nano letters.

[10]  Christoph Becher,et al.  Feedback cooling of a single trapped ion. , 2006, Physical review letters.

[11]  G. Steele,et al.  Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8 , 2015, 1510.07468.

[12]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[13]  Lukas Novotny,et al.  Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. , 2018, Physical review letters.

[14]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[15]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[16]  Christoph Dellago,et al.  Direct Measurement of Photon Recoil from a Levitated Nanoparticle. , 2016, Physical review letters.

[17]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.

[18]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[19]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[20]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[21]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[22]  G. Schmidt,et al.  Inertial sensor technology trends , 2001 .

[23]  G. Chow Analysis and control of dynamic economic systems , 1975 .

[24]  B. Stickler,et al.  Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles , 2018, Quantum Science and Technology.

[25]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[26]  A. Schliesser,et al.  Measurement-based quantum control of mechanical motion , 2018, Nature.

[27]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[28]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[29]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[30]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[31]  Peter F. Barker,et al.  Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals , 2017 .

[32]  Markus Aspelmeyer,et al.  Optomechanical Bell Test. , 2018, Physical review letters.

[33]  R. Quidant,et al.  Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. , 2018, Nano letters.

[34]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[35]  Vibhor Singh,et al.  Observation of decoherence in a carbon nanotube mechanical resonator , 2014, Nature Communications.

[36]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[37]  W. Marsden I and J , 2012 .

[38]  A. Ashkin,et al.  Applications of laser radiation pressure. , 1980, Science.

[39]  Lukas Novotny,et al.  Cooling and manipulation of a levitated nanoparticle with an optical fiber trap , 2015 .

[40]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[41]  A. Schliesser,et al.  Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution , 2016, Nature nanotechnology.

[42]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[43]  Andreas Rößler,et al.  Second Order Runge-Kutta Methods for Itô Stochastic Differential Equations , 2009, SIAM J. Numer. Anal..

[44]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[45]  M. Aspelmeyer,et al.  Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.

[46]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[47]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[48]  Fernando Monteiro,et al.  Optical levitation of 10-ng spheres with nano-g acceleration sensitivity , 2017, 1711.04675.

[49]  Lukas Novotny,et al.  Controlling the net charge on a nanoparticle optically levitated in vacuum , 2017, 1704.00169.

[50]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.