Innovative Techniques for the Detection and Characterization of the Kinematics of Slow-Moving Landslides

Remote sensing has been proven useful for landslide studies. However, conventional remote sensing techniques based on aerial photographs and optical imageries seem to be more suitable for detecting and characterizing rapid-moving landslides. This section introduces several innovative remote sensing techniques aiming at the characterization of the kinematics (e.g. displacement pattern, deformation, strain) of slow- to moderate-moving landslides. These methods include Persistent Scatterers Interferometry (PSI), automatic surveying using total station integrated with GPS, Ground-Based Synthetic Aperture Radar Interferometry (GB-InSAR), image correlation of catalogues of optical photographs (TOP) and Terrestrial Laser Scanner (TLS) point clouds. Three case studies, including the Arno river basin (Italy), the Valoria landslide (Italy) and the Super-Sauze landslide (France) are presented in order to highlight the usefulness of these techniques.

[1]  N. Casagli,et al.  Space‐borne and ground‐based SAR interferometry as tools for landslide hazard management in civil protection , 2006 .

[2]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[3]  Riccardo Lanari,et al.  A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data , 2006 .

[4]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[5]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[6]  Ping Lu,et al.  Object-Oriented Change Detection for Landslide Rapid Mapping , 2011, IEEE Geoscience and Remote Sensing Letters.

[7]  Michel Jaboyedoff,et al.  Collapse at the eastern Eiger flank in the Swiss Alps , 2008 .

[8]  M. Crosetto,et al.  Persistent Scatterer Interferometry: Potential, Limits and Initial C- and X-band Comparison , 2010 .

[9]  A. Bauer,et al.  LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008 , 2009 .

[10]  Christophe Delacourt,et al.  Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs , 2003 .

[11]  N. Casagli,et al.  Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy , 2003 .

[12]  Javier Hervás,et al.  Mapping: Inventories, Susceptibility, Hazard and Risk , 2009 .

[13]  Michael F. Goodchild,et al.  Please Scroll down for Article International Journal of Digital Earth Crowdsourcing Geographic Information for Disaster Response: a Research Frontier Crowdsourcing Geographic Information for Disaster Response: a Research Frontier , 2022 .

[14]  Christophe Delacourt,et al.  Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations , 2012 .

[15]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[16]  F. Mantovani,et al.  The use of surface monitoring data for the interpretation of landslide movement patterns , 2005 .

[17]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  David N. Petley,et al.  The evolution of slope failures: mechanisms of rupture propagation , 2004 .

[20]  H. Kaufmann,et al.  Landslide Monitoring in the Three Gorges Area Using D-INSAR and Corner Reflectors , 2004 .

[21]  Alessandro Corsini,et al.  The Valoria landslide reactivation in 2005–2006 (Northern Apennines, Italy) , 2007 .

[22]  N. Casagli,et al.  Ground-based SAR interferometry for monitoring mass movements , 2004 .

[23]  Christophe Delacourt,et al.  Remote-sensing techniques for analysing landslide kinematics: a review , 2007 .

[24]  Veronica Tofani,et al.  Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides , 2012 .

[25]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[26]  V. Singhroy,et al.  Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images , 1998 .

[27]  M. Jaboyedoff,et al.  Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning , 2009 .

[28]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[29]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[30]  Christophe Delacourt,et al.  Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images , 2004 .

[31]  Toru Higuchi,et al.  Development of progressive landslide failure in cohesive materials , 2005 .

[32]  A. Kääb,et al.  Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation , 2011 .

[33]  Christophe Delacourt,et al.  Differential single-frequency GPS monitoring of the La Valette landslide (French Alps) , 2005 .

[34]  L. Ermini,et al.  Landslide hazard and risk mapping at catchment scale in the Arno River basin , 2005 .

[35]  C. Werner,et al.  Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry , 2005 .

[36]  Filippo Catani,et al.  Statistical analysis of drainage density from digital terrain data , 2001 .

[37]  F. Brunner,et al.  MONITORING OF DEEP-SEATED MASS MOVEMENTS , 2007 .

[38]  Christian Heipke,et al.  Crowdsourcing geospatial data , 2010 .

[39]  R. Genevois,et al.  Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation , 2008 .

[40]  Christophe Delacourt,et al.  Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry , 1996 .

[41]  Kyoji Sasa,et al.  Landslides : disaster risk reduction , 2009 .

[42]  J. Avouac,et al.  Monitoring Earth Surface Dynamics With Optical Imagery , 2007 .

[43]  Filippo Catani,et al.  PSI-HSR: a new approach for representing Persistent Scatterer Interferometry (PSI) point targets using the hue and saturation scale , 2010 .

[44]  Christophe Delacourt,et al.  Contribution of multi-temporal remote sensing images to characterize landslide slip surface -- Application to the La Clapière landslide (France) , 2005 .

[45]  Urs Wegmüller,et al.  Analysis of the terrain displacement along a funicular by SAR interferometry , 2006, IEEE Geoscience and Remote Sensing Letters.

[46]  S. Preis,et al.  Autonomous Permanent Automatic Monitoring System with Robot-Tacheometers , 2006 .

[47]  Fabio Rocca,et al.  Monitoring landslides and tectonic motions with the Permanent Scatterers Technique , 2003 .

[48]  Michel Jaboyedoff,et al.  Design of a Geodetic Database and Associated Tools for Monitoring Rock-slope Movements: the Example of the Top of Randa Rockfall Scar Part of Special Issue " Geo-databases for Natural Hazards and Risk Assessment " , 2022 .

[49]  Olivier Maquaire,et al.  The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) , 2002 .

[50]  J. P. Lewis Fast Normalized Cross-Correlation , 2010 .

[51]  S. Moretti,et al.  Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project , 2006 .

[52]  C. Werner,et al.  Interferometric point target analysis for deformation mapping , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[53]  J. Mallorquí,et al.  The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring , 2008 .

[54]  Michele Manunta,et al.  A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[55]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[56]  Alessandro Corsini,et al.  Estimating mass-wasting processes in active earth slides – earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR , 2009 .

[57]  H. Takahashi,et al.  Plasma blobs observed by ground‐based optical and radio techniques in the Brazilian tropical sector , 2004 .