Plasmonic Polarization‐Rotating Emitters with Metallic Nanogroove Antennas

A subwavelength plasmonic polarization‐rotating emitter is numerically and experimentally demonstrated by designing a metallic nanogroove antenna on the metal surface. The numerical simulation shows that there is a strong resonance in the nanogroove antenna when a surface plasmon polariton mode impinges it, and the polarization of the free‐radiation field emitted by the nanogroove antenna is mainly perpendicular to the long side of the nanogroove antenna. As a result, the polarization of the free‐radiation field can be easily rotated by tilting the nanogroove antenna. Experimentally, the metallic nanogroove antennas are fabricated, and the polarization‐rotating emitters are demonstrated. By tilting the nanogroove antenna with an angle of θ (<60°), the polarization of the free‐radiation field can be rotated by θ, and the linear polarization is nearly preserved in a broad bandwidth of Δλ = 180 nm. Because of the polarization rotation of the plasmonic emitter, it is demonstrated that the signal–noise ratio of the far‐field collection can be greatly improved. This subwavelength (0.07λ2) and broadband (Δλ = 180 nm) plasmonic polarization‐rotating emitter based on the nanogroove antenna provides a new degree of freedom to tailor the light emission from the confined waveguide modes on chips, and it may find important applications in the interchip optical communications.

[1]  M Finazzi,et al.  Cross resonant optical antenna. , 2009, Physical review letters.

[2]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[3]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[4]  Hiromi Okamoto,et al.  Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. , 2006, Nano letters.

[5]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[6]  Michael G. Tanner,et al.  Quantum Photonic Interconnect , 2015, 1508.03214.

[7]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[8]  Marta Castro-López,et al.  Multipolar interference for directed light emission. , 2014, Nano letters.

[9]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[10]  Xiang Zhang,et al.  Compact magnetic antennas for directional excitation of surface plasmons. , 2012, Nano letters.

[11]  Jing Yang,et al.  Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair. , 2014, Nano letters.

[12]  Andrea Alù,et al.  Wireless at the nanoscale: optical interconnects using matched nanoantennas. , 2010, Physical review letters.

[13]  Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. , 2013, Physical review letters.

[14]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[15]  S. Maier,et al.  Directional fluorescence emission by individual V-antennas explained by mode expansion. , 2014, ACS nano.

[16]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[17]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[18]  Xiaorui Tian,et al.  Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. , 2011, Nano letters.

[19]  Ming C. Wu,et al.  Optical antenna enhanced spontaneous emission , 2015, Proceedings of the National Academy of Sciences.

[20]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[21]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[22]  Q. Gong,et al.  Efficient Unidirectional Launching of Surface Plasmons by Multi-Groove Structures , 2017, Plasmonics.

[23]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters (Print).

[24]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[25]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[26]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[27]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[28]  L. Novotný,et al.  Antennas for light , 2011 .

[29]  Q. Gong,et al.  Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. , 2011, Nano letters.

[30]  Harald Giessen,et al.  3D optical Yagi–Uda nanoantenna array , 2011, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  Sungwoo Hwang,et al.  Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide , 2015, Scientific Reports.

[32]  K. Crozier,et al.  High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering , 2012, Advanced materials.

[33]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[34]  Xiang Zhang,et al.  Submicron bidirectional all-optical plasmonic switches , 2013, Scientific Reports.

[35]  Jeremy L O'Brien,et al.  Chip-to-chip quantum photonic interconnect by path-polarization interconversion , 2016 .

[36]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[37]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[38]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[39]  Luis Landesa,et al.  Optimization of an optical wireless nanolink using directive nanoantennas. , 2013, Optics express.

[40]  Jiasen Zhang,et al.  Broadband spin‐controlled surface plasmon polariton launching and radiation via L‐shaped optical slot nanoantennas , 2014 .

[41]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[42]  Q. Gong,et al.  Polarization‐free directional coupling of surface plasmon polaritons , 2015 .

[43]  S. Fan,et al.  Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. , 2015, Nano letters.

[44]  Qihuang Gong,et al.  Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit , 2010 .

[45]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[46]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[47]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[48]  Q. Gong,et al.  Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit , 2014 .

[49]  Yan Fang,et al.  Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. , 2016, ACS nano.

[50]  Qihuang Gong,et al.  Plasmon-induced transparency in asymmetric T-shape single slit. , 2012, Nano letters.

[51]  Zachary J. Lapin,et al.  Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. , 2012, Physical review letters.

[52]  Giorgio Volpe,et al.  Multipolar radiation of quantum emitters with nanowire optical antennas , 2013, Nature Communications.

[53]  Q. Gong,et al.  Tuning Fano resonances with a nano-chamber of air. , 2016, Optics letters.

[54]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[55]  Mohsen Rahmani,et al.  Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. , 2012, Nano letters.

[56]  Jason M. Smith,et al.  Plasmonic Gas Sensing Using Nanocube Patch Antennas , 2016 .

[57]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[58]  Dries Vercruysse,et al.  Unidirectional side scattering of light by a single-element nanoantenna. , 2013, Nano letters.

[59]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[60]  Directive antenna nanocoupler to plasmonic gap waveguides. , 2013, Optics letters.

[61]  Hongxing Xu,et al.  Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer , 2008, Proceedings of the National Academy of Sciences.

[62]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.