Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy

We combine the constraints from the recent Lyα forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Lyα forest constraints with other probes. combining WMAP and the Lyα forest we find for the primordial slope ns = 0:98±0:02. We see no evidence of running, dn/=d lnk 0:003±0:010, a factor of 3 improvement over previous constraints. We also find no evidence of tensors, r < 0:36 (95% c.l.). Inflationary models predict the absence of running and many among them satisfy these constraints, particularly negative curvature models such as those based on spontaneous symmetry breaking. A positive correlation between tensors and primordial slope disfavors chaotic inflation-type models with steep slopes: while the V αo 2 model is within the 2-sigma contour, V αo4 is outside the 3- sigma contour. For the amplitude we find σ8 = 0:90 ± 0:03 from the Lyα forest and WMAP alone. We find no evidence of neutrino mass: for the case of 3 massive neutrino families with an inflationary prior, Σmv < 0:42 eV and the mass of lightest neutrino is m1 < 0:13 eV at 95% c.l. For the 3 massless +1 massive neutrino case we find mv < 0:79 eV for the massive neutrino, excluding at 95% c.l. all neutrino mass solutions compatible with the LSND results. We explore dark energy constraints in models with a fairly general time dependence of dark energy equation of state, finding Ωλ =0:72± 0:02, w(z = 0:3) = 0:98+0.10 -0.12,the latter changing to w(z = 0:3) = -0.92+0.09-0.10 if tensors are allowed. We find no evidence for variation of the equation of state with redshift, w(z = 1) = -1.03+0.21-0.28. These results rely on the current understanding of the Lyα forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here.

[1]  J. Brinkmann,et al.  SDSS galaxy bias from halo mass-bias relation and its cosmological implications , 2004, astro-ph/0406594.

[2]  S. Kim,et al.  Evidence for an oscillatory signature in atmospheric neutrino oscillations. , 2004, Physical review letters.

[3]  J. Bahcall,et al.  Solar neutrinos before and after neutrino 2004 , 2004, hep-ph/0406294.

[4]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[5]  Max Tegmark,et al.  New dark energy constraints from supernovae, microwave background, and galaxy clustering. , 2004, Physical review letters.

[6]  A. Slosar,et al.  Exact likelihood evaluations and foreground marginalization in low resolution WMAP data , 2004, astro-ph/0403073.

[7]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[8]  J. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004, astro-ph/0402359.

[9]  Alexander S. Szalay,et al.  Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.

[10]  Andrew R. Liddle,et al.  How many cosmological parameters , 2004, astro-ph/0401198.

[11]  R. Croft Ionizing Radiation Fluctuations and Large-Scale Structure in the Lyα Forest , 2003, astro-ph/0310890.

[12]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[13]  H. Murayama,et al.  WMAPping out neutrino masses , 2003, hep-ph/0302131.

[14]  M. Zaldarriaga,et al.  Ghost Inflation , 2003, hep-th/0312100.

[15]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[16]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[17]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[18]  Cambridge,et al.  The power spectrum of the flux distribution in the Lyman α forest of a large sample of UVES QSO absorption spectra (LUQAS) , 2003, astro-ph/0308103.

[19]  P. Mcdonald,et al.  The Transverse Proximity Effect: A Probe to the Environment, Anisotropy, and Megayear Variability of QSOs , 2003, astro-ph/0307563.

[20]  A. Liddle,et al.  How long before the end of inflation were observable perturbations produced , 2003, astro-ph/0305263.

[21]  M. Trodden,et al.  Running of the scalar spectral index from inflationary models , 2003, astro-ph/0305193.

[22]  S. Dodelson,et al.  Horizon ratio bound for inflationary fluctuations. , 2003, Physical review letters.

[23]  J. Yokoyama,et al.  Inflation with a running spectral index in supergravity , 2003, hep-ph/0304161.

[24]  O. Lahav,et al.  Precision Cosmology? Not Just Yet . . . , 2003, Science.

[25]  S. Hannestad Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.

[26]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[27]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[28]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[29]  R. Mandelbaum,et al.  Precision cosmology from the Lyman α forest: power spectrum and bispectrum , 2003, astro-ph/0302112.

[30]  P. Steinhardt,et al.  Inflation versus cyclic predictions for spectral tilt. , 2003, Physical review letters.

[31]  Hsin-Chia Cheng,et al.  Extranatural inflation. , 2003, Physical review letters.

[32]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[33]  J. Valle,et al.  Global analysis of neutrino oscillation data in four-neutrino schemes , 2002, hep-ph/0209368.

[34]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[35]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[36]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[37]  R. Stefanski The status of MiniBooNE , 2002 .

[38]  Yannick Mellier,et al.  Weak Lensing Study of Galaxy Biasing , 2002, astro-ph/0206103.

[39]  J. Bahcall,et al.  If sterile neutrinos exist, how can one determine the total solar neutrino fluxes? , 2002, hep-ph/0204194.

[40]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[41]  A. Hamilton,et al.  Matter power spectrum from the Lyman-alpha forest: myth or reality? , 2001, astro-ph/0111194.

[42]  Ruth A. Daly,et al.  Cosmological Inflation and Large-Scale Structure , 2001 .

[43]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[44]  P. Steinhardt,et al.  The Ekpyrotic universe: Colliding branes and the origin of the hot big bang , 2001, hep-th/0103239.

[45]  P. Mcdonald,et al.  A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyα Absorption-Line Fitting Method , 2000, astro-ph/0005553.

[46]  R. Croft,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000, astro-ph/0012324.

[47]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[48]  P. Mcdonald,et al.  The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest , 1999, astro-ph/9911196.

[49]  R. R. Caldwell,et al.  A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state , 1999, astro-ph/9908168.

[50]  S. Cole,et al.  Estimating β from redshift‐space distortions in the 2dF galaxy survey , 1999, astro-ph/9905186.

[51]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[52]  P. Steinhardt,et al.  Cosmological tracking solutions , 1998, astro-ph/9812313.

[53]  D. Lyth,et al.  Particle physics models of inflation and the cosmological density perturbation , 1998, hep-ph/9807278.

[54]  R. Knox,et al.  The Identification of Dark Matter , 1999 .

[55]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[56]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[57]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[58]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[59]  E. Blaufuss,et al.  Measurements of the solar neutrino flux from Super-Kamiokande's first 300 days , 1998 .

[60]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[61]  L. Hui,et al.  Probing the Universe with the Lyα forest — I. Hydrodynamics of the low-density intergalactic medium , 1997, astro-ph/9706219.

[62]  Andrei Linde,et al.  Hybrid inflation in supergravity , 1997, hep-ph/9703209.

[63]  S. Dodelson,et al.  Cosmic microwave background measurements can discriminate among inflation models , 1997, astro-ph/9702166.

[64]  M. Zaldarriaga Polarization of the microwave background in reionized models , 1996, astro-ph/9608050.

[65]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[66]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[67]  Q. Shafi,et al.  Large scale structure and supersymmetric inflation without fine tuning. , 1994, Physical review letters.

[68]  Andrei Linde,et al.  Hybrid inflation. , 1993, Physical review. D, Particles and fields.

[69]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[70]  Physical Review Letters 63 , 1989 .

[71]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[72]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[73]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[74]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[75]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[76]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[77]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .