Degree correlations in scale-free null models

We study the average nearest neighbor degree $a(k)$ of vertices with degree $k$. In many real-world networks with power-law degree distribution $a(k)$ falls off in $k$, a property ascribed to the constraint that any two vertices are connected by at most one edge. We show that $a(k)$ indeed decays in $k$ in three simple random graph null models with power-law degrees: the erased configuration model, the rank-1 inhomogeneous random graph and the hyperbolic random graph. We consider the large-network limit when the number of nodes $n$ tends to infinity. We find for all three null models that $a(k)$ starts to decay beyond $n^{(\tau-2)/(\tau-1)}$ and then settles on a power law $a(k)\sim k^{\tau-3}$, with $\tau$ the degree exponent.

[1]  M. Serrano,et al.  Percolation and epidemic thresholds in clustered networks. , 2006, Physical review letters.

[2]  N. Litvak,et al.  Limit theorems for assortativity and clustering in the configuration model with scale-free degrees , 2017 .

[3]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[4]  K. Sneppen,et al.  Detection of topological patterns in complex networks: correlation profile of the internet , 2002, cond-mat/0205379.

[5]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[6]  Johan van Leeuwaarden,et al.  Clustering Spectrum of hierarchical scale-free networks , 2017, ArXiv.

[7]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Ralph Keusch,et al.  Sampling Geometric Inhomogeneous Random Graphs in Linear Time , 2017, ESA.

[9]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[11]  A J E M Janssen,et al.  Clustering spectrum of scale-free networks. , 2017, Physical review. E.

[12]  Piet Van Mieghem,et al.  Distances in random graphs with finite variance degrees , 2005, Random Struct. Algorithms.

[13]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[14]  R. Hofstad,et al.  Optimal subgraph structures in scale-free configuration models , 2017, 1709.03466.

[15]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Pim van der Hoorn,et al.  Average nearest neighbor degrees in scale-free networks , 2017, Internet Math..

[17]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[18]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[19]  A J E M Janssen,et al.  Local clustering in scale-free networks with hidden variables. , 2016, Physical review. E.

[20]  Preetam Ghosh,et al.  Long-range degree correlations in complex networks , 2015 .

[21]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[22]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[24]  S. N. Dorogovtsev Clustering of correlated networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tobias Friedrich,et al.  Cliques in hyperbolic random graphs , 2015, INFOCOM.

[26]  Nikolaos Fountoulakis,et al.  On the Largest Component of a Hyperbolic Model of Complex Networks , 2015, Electron. J. Comb..

[27]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[28]  Pim van der Hoorn,et al.  Upper Bounds for Number of Removed Edges in the Erased Configuration Model , 2015, WAW.

[29]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[30]  A. Vázquez Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Remco van der Hofstad,et al.  Universality for the Distance in Finite Variance Random Graphs , 2006 .

[32]  Nikolaos Fountoulakis,et al.  Clustering and the Hyperbolic Geometry of Complex Networks , 2014, WAW.

[33]  Shankar Bhamidi,et al.  Continuum limit of critical inhomogeneous random graphs , 2014, 1404.4118.

[34]  Svante Janson,et al.  A simple solution to the k-core problem , 2007, Random Struct. Algorithms.

[35]  Piet Van Mieghem,et al.  Three-query PCPs with perfect completeness over non-Boolean domains , 2005 .

[36]  Pol Colomer-de-Simon,et al.  Clustering of random scale-free networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Nikolaos Fountoulakis,et al.  The probability of connectivity in a hyperbolic model of complex networks , 2016, Random Struct. Algorithms.

[39]  R. Hofstad,et al.  Universality for critical heavy-tailed network models: Metric structure of maximal components , 2017, Electronic Journal of Probability.

[40]  Alessandro Vespignani,et al.  Absence of epidemic threshold in scale-free networks with degree correlations. , 2002, Physical review letters.

[41]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[42]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Luca Gugelmann,et al.  Random Hyperbolic Graphs: Degree Sequence and Clustering , 2012, ArXiv.

[44]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[45]  R. Pastor-Satorras,et al.  Generation of uncorrelated random scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Massimo Ostilli Fluctuation analysis in complex networks modeled by hidden-variable models: necessity of a large cutoff in hidden-variable models. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Remco van der Hofstad,et al.  Universality for first passage percolation on sparse random graphs , 2012, 1210.6839.

[48]  M. Newman,et al.  Origin of degree correlations in the Internet and other networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.