Conditional quantile processes based on series or many regressors

Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR-series framework covering many regressors as a special case, for performing inference on the entire conditional quantile function and its linear functionals. In this framework, we approximate the entire conditional quantile function by a linear combination of series terms with quantile-speci fic coefficients and estimate the function-valued coefficients from the data. We develop large sample theory for the QR-series coefficient process, namely we obtain uniform strong approximations to the QR-series coefficient process by conditionally pivotal and Gaussian processes. Based on these two strong approximations, or couplings, we develop four resampling methods (pivotal, gradient bootstrap, Gaussian, and weighted bootstrap) that can be used for inference on the entire QR-series coefficient function. We apply these results to obtain estimation and inference methods for linear functionals of the conditional quantile function, such as the conditional quantile function itself, its partial derivatives, average partial derivatives, and conditional average partial derivatives. Speci fically, we obtain uniform rates of convergence and show how to use the four resampling methods mentioned above for inference on the functionals. All of the above results are for function-valued parameters, holding uniformly in both the quantile index and the covariate value, and covering the pointwise case as a by-product. We demonstrate the practical utility of these results with an empirical example, where we estimate the price elasticity function and test the Slutsky condition of the individual demand for gasoline, as indexed by the individual unobserved propensity for gasoline consumption.

[1]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[2]  Nonparametric Estimation of an Additive Quantile Regression Model , 2005 .

[3]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[4]  R. Koenker,et al.  Quantile spline models for global temperature change , 1994 .

[5]  Yingcun Xia,et al.  UNIFORM BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATES OF M-REGRESSION AND ITS APPLICATION TO THE ADDITIVE MODEL , 2007, Econometric Theory.

[6]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[7]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[8]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[9]  Gerda Claeskens,et al.  Bootstrap confidence bands for regression curves and their derivatives , 2003 .

[10]  Kengo Kato,et al.  Gaussian approximation of suprema of empirical processes , 2014 .

[11]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[12]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[13]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[14]  S. Geer M-estimation using penalties or sieves , 2002 .

[15]  H. White Nonparametric Estimation of Conditional Quantiles Using Neural Networks , 1990 .

[16]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[17]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[18]  Vladimir Koltchinskii,et al.  Komlos-Major-Tusnady approximation for the general empirical process and Haar expansions of classes of functions , 1994 .

[19]  Conditional Quantile Processes Based on Series or Many Regressors , 2011 .

[20]  Rosa L. Matzkin Nonparametric Estimation of Nonadditive Random Functions , 2003 .

[21]  Kengo Kato,et al.  Robust inference in high-dimensional approximately sparse quantile regression models , 2013 .

[22]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[23]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[24]  Camille Sabbah,et al.  UNIFORM BIAS STUDY AND BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATORS OF THE CONDITIONAL QUANTILE FUNCTION , 2011, Econometric Theory.

[25]  A. Belloni,et al.  ℓ[subscript 1]-penalized quantile regression in high-dimensional sparse models , 2011 .

[26]  Zhongjun Qu,et al.  Nonparametric estimation and inference on conditional quantile processes , 2015 .

[27]  Demian Pouzo,et al.  Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals , 2008 .

[28]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[29]  P. Chaudhuri Global nonparametric estimation of conditional quantile functions and their derivatives , 1991 .

[30]  Richard Schmalensee,et al.  Household Gasoline Demand in the United States , 1999 .

[31]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[32]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[33]  W. Newey,et al.  Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss by , 2009 .

[34]  M. Rudelson,et al.  Lp-moments of random vectors via majorizing measures , 2005, math/0507023.

[35]  P. Hall,et al.  On the Distribution of a Studentized Quantile , 1988 .

[36]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[37]  Jinyong Hahn Bayesian Bootstrap of the Quantile Regression Estimator--A Large Sample Study , 1997 .

[38]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[39]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[40]  Oliver Linton,et al.  An Improved Bootstrap Test of Stochastic Dominance , 2009 .

[41]  Sokbae Lee,et al.  Intersection bounds: estimation and inference , 2009, 0907.3503.

[42]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[43]  Kevin F. Hallock,et al.  Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data , 1999 .

[44]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[45]  Adonis Yatchew,et al.  Household Gasoline Demand in Canada , 2001 .

[46]  Sokbae Lee,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003, Econometric Theory.

[47]  Arthur Lewbel,et al.  Characterizing Some Gorman Engel Curves , 1987 .

[48]  J. Horowitz,et al.  Uniform confidence bands for functions estimated nonparametrically with instrumental variables , 2009 .

[49]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[50]  Holger Dette,et al.  Testing Multivariate Economic Restrictions Using Quantiles: The Example of Slutsky Negative Semidefiniteness , 2011 .

[51]  M. D. Cattaneo,et al.  Treatment effects with many covariates and heteroskedasticity , 2015 .

[52]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[53]  J. Wellner,et al.  Exchangeably Weighted Bootstraps of the General Empirical Process , 1993 .

[54]  Emmanuel Rio,et al.  Local invariance principles and their application to density estimation , 1994 .

[55]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[56]  Kengo Kato,et al.  Some new asymptotic theory for least squares series: Pointwise and uniform results , 2012, 1212.0442.

[57]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[58]  R. Nickl,et al.  CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.

[59]  Richard K. Crump,et al.  Robust Data-Driven Inference for Density-Weighted Average Derivatives , 2009 .

[60]  Kengo Kato,et al.  Anti-concentration and honest, adaptive confidence bands , 2013, 1303.7152.

[61]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[62]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[63]  Ya'acov Ritov,et al.  Partial Linear Quantile Regression and Bootstrap Confidence Bands , 2009 .

[64]  J. Horowitz,et al.  Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation: Price responsiveness of gasoline demand , 2012 .

[65]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[66]  P. Bickel,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 1973 .

[67]  Jianhua Z. Huang Projection estimation in multiple regression with application to functional ANOVA models , 1998 .

[68]  Guang Cheng,et al.  Quantile Processes for Semi and Nonparametric Regression , 2016, 1604.02130.

[69]  E. Mammen,et al.  Identification and Estimation of Local Average Derivatives in Non-Separable Models Without Monotonicity , 2009 .

[70]  S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007 .

[71]  R. Koenker,et al.  Regression Quantiles , 2007 .

[72]  R. A. Vitale Some comparisons for Gaussian processes , 2000, math/0011093.

[73]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[74]  G. Imbens,et al.  Nonparametric Applications of Bayesian Inference , 1996 .

[75]  Max H. Farrell,et al.  Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators☆ , 2013 .

[76]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .