Structure of Complexity Classes: Separations, Collapses, and Completeness

During the last few years, unprecedented progress has been made in structural complexity theory; class inclusions and relativized separations were discovered, and hierarchies collapsed. We survey this progress, highlighting the central role of counting techniques. We also present a new result whose proof demonstrates the power of combinatorial arguments: there is a relativized world in which UP has no Turing complete sets.

[1]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[2]  Klaus W. Wagner,et al.  Some Observations on the Connection Between Counting an Recursion , 1986, Theor. Comput. Sci..

[3]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[4]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[5]  Uwe Schöning,et al.  Complexity and Structure , 1986, Lecture Notes in Computer Science.

[6]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[7]  Allan Borodin,et al.  Two applications of complementation via inductive counting , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Stuart A. Kurtz,et al.  Collapsing degrees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Jin-Yi Cai,et al.  On the Power of Parity Polynomial Time , 1989, STACS.

[11]  Uwe Schöning,et al.  Robust Algorithms: A Different Approach to Oracles , 1985, Theor. Comput. Sci..

[12]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[13]  Jin-Yi Cai,et al.  With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy , 1986, STOC '86.

[14]  L. Hemachandra,et al.  Counting in structural complexity theory , 1987 .

[15]  Judy Goldsmith,et al.  Three results on the polynomial isomorphism of complete sets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[16]  Stathis Zachos,et al.  Probabilistic Quantifiers, Adversaries, and Complexity Classes: An Overview , 1986, SCT.

[17]  Amihood Amir,et al.  Polynomial Terse Sets , 1988, Inf. Comput..

[18]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[19]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[20]  Neil Immerman,et al.  On Complete Problems for NP$\cap$CoNP , 1985, ICALP.

[21]  Juris Hartmanis,et al.  One-Way Functions, Robustness, and the Non-Isomorphism of NP-Complete Sets , 1987, Proceeding Structure in Complexity Theory.

[22]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[23]  Timothy J. Long,et al.  A Note on Sparse Oracles for NP , 1982, J. Comput. Syst. Sci..

[24]  Róbert Szelepcsényi The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.

[25]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[26]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[27]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[28]  Lane A. Hemachandra Can P and NP Manufacture Randomness , 1986 .

[29]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[30]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[31]  Wojciech Kowalczyk,et al.  Some Connections between Representability of Complexity Classes and the Power of Formal Systems of Reasoning , 1984, MFCS.

[32]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[33]  Klaus W. Wagner,et al.  Collapsing Oracle Hierarchies, Census Functions and Logarithmically Many Queries , 1988, STACS.

[34]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1986, Theor. Comput. Sci..

[35]  Jin-Yi Cai,et al.  Enumerative counting is hard , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[36]  Manuel Blum,et al.  Generic oracles and oracle classes , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[37]  Seinosuke Toda Sigma_2 SPACE(n) is Closed under Complement , 1987, J. Comput. Syst. Sci..

[38]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[39]  Klaus Ambos-Spies A Note on the Complete Problems for Complexity Classes , 1986, Inf. Process. Lett..

[40]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[41]  Klaus-Jörn Lange,et al.  The logarithmic alternation hierarchy collapses: Aσ L -2- = AP L -2- , 1987 .

[42]  Stuart A. Kurtz A relativized failure of the Berman-Hartmanis conjecture , 1983 .

[43]  Uwe Schöning The power of counting , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[44]  Uwe Schöning,et al.  A Low and a High Hierarchy within NP , 1983, J. Comput. Syst. Sci..

[45]  Janos Simon,et al.  On the Difference Between One and Many (Preliminary Version) , 1977, ICALP.

[46]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[47]  Gábor Tardos,et al.  Query complexity, or why is it difficult to separateNPA∩coNPA fromPA by random oraclesA? , 1989, Comb..

[48]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[49]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[50]  Ker-I Ko Relativized polynomial time hierarchies having exactly K levels , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[51]  Gerd Wechsung,et al.  Counting classes with finite acceptance types , 1987 .