Efficient estimation for the proportional hazards model with interval censoring

The maximum likelihood estimator (MLE) for the proportional hazards model with case 1 interval censored data is studied. It is shown that the MLE for the regression parameter is asymptotically normal with √n convergence rate and achieves the information bound, even though the MLE for the baseline cumulative hazard function only converges at n 1/3 rate. Estimation of the asymptotic variance matrix for the MLE of the regression parameter is also considered. To prove our main results, we also establish a general theorem showing that the MLE of the finite-dimensional parameter in a class of semiparametric models is asymptotically efficient even though the MLE of the infinite-dimensional parameter converges at a rate slower than √n. The results are iliustrated by applying them to a data set from a tumorigenicity study.

[1]  D. Cox Regression Models and Life-Tables , 1972 .

[2]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[3]  Ian Diamond,et al.  The analysis of current status data , 1992 .

[4]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[5]  D. Finkelstein,et al.  A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.

[6]  J. Wellner,et al.  Existence and consistency of maximum likelihood in upgraded mixture models , 1992 .

[7]  David Eberly,et al.  On Convergence of Convex Minorant Algorithms for Distribution Estimation with Interval-Censored Data , 1992 .

[8]  R. Wolfe,et al.  A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[11]  W. Wong,et al.  On Maximum Likelihood Estimation in Infinite-Dimensional Parameter Spaces , 1991 .

[12]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[13]  H. Bauer,et al.  Probability Theory and Elements of Measure Theory , 1982 .

[14]  Nicholas P. Jewell,et al.  Nonparametric Estimation for a form of Doubly Censored Data, with Application to Two Problems in AIDS , 1994 .

[15]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[16]  Nicholas P. Jewell,et al.  Statistical Analysis of the Time Dependence of HIV Infectivity Based on Partner Study Data , 1992 .

[17]  A. V. D. Vaart,et al.  On Differentiable Functionals , 1991 .

[18]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[19]  D G Hoel,et al.  Statistical analysis of survival experiments. , 1972, Journal of the National Cancer Institute.

[20]  J. Wellner,et al.  Regression Models with Interval Censoring , 1993 .

[21]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[22]  S. Geer Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators , 1993 .

[23]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .